| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idafval.i |  |-  I = ( IdA ` C ) | 
						
							| 2 |  | idafval.b |  |-  B = ( Base ` C ) | 
						
							| 3 |  | idafval.c |  |-  ( ph -> C e. Cat ) | 
						
							| 4 |  | idafval.1 |  |-  .1. = ( Id ` C ) | 
						
							| 5 |  | fveq2 |  |-  ( c = C -> ( Base ` c ) = ( Base ` C ) ) | 
						
							| 6 | 5 2 | eqtr4di |  |-  ( c = C -> ( Base ` c ) = B ) | 
						
							| 7 |  | fveq2 |  |-  ( c = C -> ( Id ` c ) = ( Id ` C ) ) | 
						
							| 8 | 7 4 | eqtr4di |  |-  ( c = C -> ( Id ` c ) = .1. ) | 
						
							| 9 | 8 | fveq1d |  |-  ( c = C -> ( ( Id ` c ) ` x ) = ( .1. ` x ) ) | 
						
							| 10 | 9 | oteq3d |  |-  ( c = C -> <. x , x , ( ( Id ` c ) ` x ) >. = <. x , x , ( .1. ` x ) >. ) | 
						
							| 11 | 6 10 | mpteq12dv |  |-  ( c = C -> ( x e. ( Base ` c ) |-> <. x , x , ( ( Id ` c ) ` x ) >. ) = ( x e. B |-> <. x , x , ( .1. ` x ) >. ) ) | 
						
							| 12 |  | df-ida |  |-  IdA = ( c e. Cat |-> ( x e. ( Base ` c ) |-> <. x , x , ( ( Id ` c ) ` x ) >. ) ) | 
						
							| 13 | 11 12 2 | mptfvmpt |  |-  ( C e. Cat -> ( IdA ` C ) = ( x e. B |-> <. x , x , ( .1. ` x ) >. ) ) | 
						
							| 14 | 3 13 | syl |  |-  ( ph -> ( IdA ` C ) = ( x e. B |-> <. x , x , ( .1. ` x ) >. ) ) | 
						
							| 15 | 1 14 | eqtrid |  |-  ( ph -> I = ( x e. B |-> <. x , x , ( .1. ` x ) >. ) ) |