| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idafval.i |
|- I = ( IdA ` C ) |
| 2 |
|
idafval.b |
|- B = ( Base ` C ) |
| 3 |
|
idafval.c |
|- ( ph -> C e. Cat ) |
| 4 |
|
idafval.1 |
|- .1. = ( Id ` C ) |
| 5 |
|
fveq2 |
|- ( c = C -> ( Base ` c ) = ( Base ` C ) ) |
| 6 |
5 2
|
eqtr4di |
|- ( c = C -> ( Base ` c ) = B ) |
| 7 |
|
fveq2 |
|- ( c = C -> ( Id ` c ) = ( Id ` C ) ) |
| 8 |
7 4
|
eqtr4di |
|- ( c = C -> ( Id ` c ) = .1. ) |
| 9 |
8
|
fveq1d |
|- ( c = C -> ( ( Id ` c ) ` x ) = ( .1. ` x ) ) |
| 10 |
9
|
oteq3d |
|- ( c = C -> <. x , x , ( ( Id ` c ) ` x ) >. = <. x , x , ( .1. ` x ) >. ) |
| 11 |
6 10
|
mpteq12dv |
|- ( c = C -> ( x e. ( Base ` c ) |-> <. x , x , ( ( Id ` c ) ` x ) >. ) = ( x e. B |-> <. x , x , ( .1. ` x ) >. ) ) |
| 12 |
|
df-ida |
|- IdA = ( c e. Cat |-> ( x e. ( Base ` c ) |-> <. x , x , ( ( Id ` c ) ` x ) >. ) ) |
| 13 |
11 12 2
|
mptfvmpt |
|- ( C e. Cat -> ( IdA ` C ) = ( x e. B |-> <. x , x , ( .1. ` x ) >. ) ) |
| 14 |
3 13
|
syl |
|- ( ph -> ( IdA ` C ) = ( x e. B |-> <. x , x , ( .1. ` x ) >. ) ) |
| 15 |
1 14
|
eqtrid |
|- ( ph -> I = ( x e. B |-> <. x , x , ( .1. ` x ) >. ) ) |