Step |
Hyp |
Ref |
Expression |
1 |
|
idafval.i |
|- I = ( IdA ` C ) |
2 |
|
idafval.b |
|- B = ( Base ` C ) |
3 |
|
idafval.c |
|- ( ph -> C e. Cat ) |
4 |
|
idafval.1 |
|- .1. = ( Id ` C ) |
5 |
|
fveq2 |
|- ( c = C -> ( Base ` c ) = ( Base ` C ) ) |
6 |
5 2
|
eqtr4di |
|- ( c = C -> ( Base ` c ) = B ) |
7 |
|
fveq2 |
|- ( c = C -> ( Id ` c ) = ( Id ` C ) ) |
8 |
7 4
|
eqtr4di |
|- ( c = C -> ( Id ` c ) = .1. ) |
9 |
8
|
fveq1d |
|- ( c = C -> ( ( Id ` c ) ` x ) = ( .1. ` x ) ) |
10 |
9
|
oteq3d |
|- ( c = C -> <. x , x , ( ( Id ` c ) ` x ) >. = <. x , x , ( .1. ` x ) >. ) |
11 |
6 10
|
mpteq12dv |
|- ( c = C -> ( x e. ( Base ` c ) |-> <. x , x , ( ( Id ` c ) ` x ) >. ) = ( x e. B |-> <. x , x , ( .1. ` x ) >. ) ) |
12 |
|
df-ida |
|- IdA = ( c e. Cat |-> ( x e. ( Base ` c ) |-> <. x , x , ( ( Id ` c ) ` x ) >. ) ) |
13 |
11 12 2
|
mptfvmpt |
|- ( C e. Cat -> ( IdA ` C ) = ( x e. B |-> <. x , x , ( .1. ` x ) >. ) ) |
14 |
3 13
|
syl |
|- ( ph -> ( IdA ` C ) = ( x e. B |-> <. x , x , ( .1. ` x ) >. ) ) |
15 |
1 14
|
eqtrid |
|- ( ph -> I = ( x e. B |-> <. x , x , ( .1. ` x ) >. ) ) |