Step |
Hyp |
Ref |
Expression |
0 |
|
cida |
|- IdA |
1 |
|
vc |
|- c |
2 |
|
ccat |
|- Cat |
3 |
|
vx |
|- x |
4 |
|
cbs |
|- Base |
5 |
1
|
cv |
|- c |
6 |
5 4
|
cfv |
|- ( Base ` c ) |
7 |
3
|
cv |
|- x |
8 |
|
ccid |
|- Id |
9 |
5 8
|
cfv |
|- ( Id ` c ) |
10 |
7 9
|
cfv |
|- ( ( Id ` c ) ` x ) |
11 |
7 7 10
|
cotp |
|- <. x , x , ( ( Id ` c ) ` x ) >. |
12 |
3 6 11
|
cmpt |
|- ( x e. ( Base ` c ) |-> <. x , x , ( ( Id ` c ) ` x ) >. ) |
13 |
1 2 12
|
cmpt |
|- ( c e. Cat |-> ( x e. ( Base ` c ) |-> <. x , x , ( ( Id ` c ) ` x ) >. ) ) |
14 |
0 13
|
wceq |
|- IdA = ( c e. Cat |-> ( x e. ( Base ` c ) |-> <. x , x , ( ( Id ` c ) ` x ) >. ) ) |