| Step | Hyp | Ref | Expression | 
						
							| 0 |  | ccoa |  |-  compA | 
						
							| 1 |  | vc |  |-  c | 
						
							| 2 |  | ccat |  |-  Cat | 
						
							| 3 |  | vg |  |-  g | 
						
							| 4 |  | carw |  |-  Arrow | 
						
							| 5 | 1 | cv |  |-  c | 
						
							| 6 | 5 4 | cfv |  |-  ( Arrow ` c ) | 
						
							| 7 |  | vf |  |-  f | 
						
							| 8 |  | vh |  |-  h | 
						
							| 9 |  | ccoda |  |-  codA | 
						
							| 10 | 8 | cv |  |-  h | 
						
							| 11 | 10 9 | cfv |  |-  ( codA ` h ) | 
						
							| 12 |  | cdoma |  |-  domA | 
						
							| 13 | 3 | cv |  |-  g | 
						
							| 14 | 13 12 | cfv |  |-  ( domA ` g ) | 
						
							| 15 | 11 14 | wceq |  |-  ( codA ` h ) = ( domA ` g ) | 
						
							| 16 | 15 8 6 | crab |  |-  { h e. ( Arrow ` c ) | ( codA ` h ) = ( domA ` g ) } | 
						
							| 17 | 7 | cv |  |-  f | 
						
							| 18 | 17 12 | cfv |  |-  ( domA ` f ) | 
						
							| 19 | 13 9 | cfv |  |-  ( codA ` g ) | 
						
							| 20 |  | c2nd |  |-  2nd | 
						
							| 21 | 13 20 | cfv |  |-  ( 2nd ` g ) | 
						
							| 22 | 18 14 | cop |  |-  <. ( domA ` f ) , ( domA ` g ) >. | 
						
							| 23 |  | cco |  |-  comp | 
						
							| 24 | 5 23 | cfv |  |-  ( comp ` c ) | 
						
							| 25 | 22 19 24 | co |  |-  ( <. ( domA ` f ) , ( domA ` g ) >. ( comp ` c ) ( codA ` g ) ) | 
						
							| 26 | 17 20 | cfv |  |-  ( 2nd ` f ) | 
						
							| 27 | 21 26 25 | co |  |-  ( ( 2nd ` g ) ( <. ( domA ` f ) , ( domA ` g ) >. ( comp ` c ) ( codA ` g ) ) ( 2nd ` f ) ) | 
						
							| 28 | 18 19 27 | cotp |  |-  <. ( domA ` f ) , ( codA ` g ) , ( ( 2nd ` g ) ( <. ( domA ` f ) , ( domA ` g ) >. ( comp ` c ) ( codA ` g ) ) ( 2nd ` f ) ) >. | 
						
							| 29 | 3 7 6 16 28 | cmpo |  |-  ( g e. ( Arrow ` c ) , f e. { h e. ( Arrow ` c ) | ( codA ` h ) = ( domA ` g ) } |-> <. ( domA ` f ) , ( codA ` g ) , ( ( 2nd ` g ) ( <. ( domA ` f ) , ( domA ` g ) >. ( comp ` c ) ( codA ` g ) ) ( 2nd ` f ) ) >. ) | 
						
							| 30 | 1 2 29 | cmpt |  |-  ( c e. Cat |-> ( g e. ( Arrow ` c ) , f e. { h e. ( Arrow ` c ) | ( codA ` h ) = ( domA ` g ) } |-> <. ( domA ` f ) , ( codA ` g ) , ( ( 2nd ` g ) ( <. ( domA ` f ) , ( domA ` g ) >. ( comp ` c ) ( codA ` g ) ) ( 2nd ` f ) ) >. ) ) | 
						
							| 31 | 0 30 | wceq |  |-  compA = ( c e. Cat |-> ( g e. ( Arrow ` c ) , f e. { h e. ( Arrow ` c ) | ( codA ` h ) = ( domA ` g ) } |-> <. ( domA ` f ) , ( codA ` g ) , ( ( 2nd ` g ) ( <. ( domA ` f ) , ( domA ` g ) >. ( comp ` c ) ( codA ` g ) ) ( 2nd ` f ) ) >. ) ) |