Step |
Hyp |
Ref |
Expression |
0 |
|
ccoa |
|- compA |
1 |
|
vc |
|- c |
2 |
|
ccat |
|- Cat |
3 |
|
vg |
|- g |
4 |
|
carw |
|- Arrow |
5 |
1
|
cv |
|- c |
6 |
5 4
|
cfv |
|- ( Arrow ` c ) |
7 |
|
vf |
|- f |
8 |
|
vh |
|- h |
9 |
|
ccoda |
|- codA |
10 |
8
|
cv |
|- h |
11 |
10 9
|
cfv |
|- ( codA ` h ) |
12 |
|
cdoma |
|- domA |
13 |
3
|
cv |
|- g |
14 |
13 12
|
cfv |
|- ( domA ` g ) |
15 |
11 14
|
wceq |
|- ( codA ` h ) = ( domA ` g ) |
16 |
15 8 6
|
crab |
|- { h e. ( Arrow ` c ) | ( codA ` h ) = ( domA ` g ) } |
17 |
7
|
cv |
|- f |
18 |
17 12
|
cfv |
|- ( domA ` f ) |
19 |
13 9
|
cfv |
|- ( codA ` g ) |
20 |
|
c2nd |
|- 2nd |
21 |
13 20
|
cfv |
|- ( 2nd ` g ) |
22 |
18 14
|
cop |
|- <. ( domA ` f ) , ( domA ` g ) >. |
23 |
|
cco |
|- comp |
24 |
5 23
|
cfv |
|- ( comp ` c ) |
25 |
22 19 24
|
co |
|- ( <. ( domA ` f ) , ( domA ` g ) >. ( comp ` c ) ( codA ` g ) ) |
26 |
17 20
|
cfv |
|- ( 2nd ` f ) |
27 |
21 26 25
|
co |
|- ( ( 2nd ` g ) ( <. ( domA ` f ) , ( domA ` g ) >. ( comp ` c ) ( codA ` g ) ) ( 2nd ` f ) ) |
28 |
18 19 27
|
cotp |
|- <. ( domA ` f ) , ( codA ` g ) , ( ( 2nd ` g ) ( <. ( domA ` f ) , ( domA ` g ) >. ( comp ` c ) ( codA ` g ) ) ( 2nd ` f ) ) >. |
29 |
3 7 6 16 28
|
cmpo |
|- ( g e. ( Arrow ` c ) , f e. { h e. ( Arrow ` c ) | ( codA ` h ) = ( domA ` g ) } |-> <. ( domA ` f ) , ( codA ` g ) , ( ( 2nd ` g ) ( <. ( domA ` f ) , ( domA ` g ) >. ( comp ` c ) ( codA ` g ) ) ( 2nd ` f ) ) >. ) |
30 |
1 2 29
|
cmpt |
|- ( c e. Cat |-> ( g e. ( Arrow ` c ) , f e. { h e. ( Arrow ` c ) | ( codA ` h ) = ( domA ` g ) } |-> <. ( domA ` f ) , ( codA ` g ) , ( ( 2nd ` g ) ( <. ( domA ` f ) , ( domA ` g ) >. ( comp ` c ) ( codA ` g ) ) ( 2nd ` f ) ) >. ) ) |
31 |
0 30
|
wceq |
|- compA = ( c e. Cat |-> ( g e. ( Arrow ` c ) , f e. { h e. ( Arrow ` c ) | ( codA ` h ) = ( domA ` g ) } |-> <. ( domA ` f ) , ( codA ` g ) , ( ( 2nd ` g ) ( <. ( domA ` f ) , ( domA ` g ) >. ( comp ` c ) ( codA ` g ) ) ( 2nd ` f ) ) >. ) ) |