| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccoa |
⊢ compa |
| 1 |
|
vc |
⊢ 𝑐 |
| 2 |
|
ccat |
⊢ Cat |
| 3 |
|
vg |
⊢ 𝑔 |
| 4 |
|
carw |
⊢ Arrow |
| 5 |
1
|
cv |
⊢ 𝑐 |
| 6 |
5 4
|
cfv |
⊢ ( Arrow ‘ 𝑐 ) |
| 7 |
|
vf |
⊢ 𝑓 |
| 8 |
|
vh |
⊢ ℎ |
| 9 |
|
ccoda |
⊢ coda |
| 10 |
8
|
cv |
⊢ ℎ |
| 11 |
10 9
|
cfv |
⊢ ( coda ‘ ℎ ) |
| 12 |
|
cdoma |
⊢ doma |
| 13 |
3
|
cv |
⊢ 𝑔 |
| 14 |
13 12
|
cfv |
⊢ ( doma ‘ 𝑔 ) |
| 15 |
11 14
|
wceq |
⊢ ( coda ‘ ℎ ) = ( doma ‘ 𝑔 ) |
| 16 |
15 8 6
|
crab |
⊢ { ℎ ∈ ( Arrow ‘ 𝑐 ) ∣ ( coda ‘ ℎ ) = ( doma ‘ 𝑔 ) } |
| 17 |
7
|
cv |
⊢ 𝑓 |
| 18 |
17 12
|
cfv |
⊢ ( doma ‘ 𝑓 ) |
| 19 |
13 9
|
cfv |
⊢ ( coda ‘ 𝑔 ) |
| 20 |
|
c2nd |
⊢ 2nd |
| 21 |
13 20
|
cfv |
⊢ ( 2nd ‘ 𝑔 ) |
| 22 |
18 14
|
cop |
⊢ 〈 ( doma ‘ 𝑓 ) , ( doma ‘ 𝑔 ) 〉 |
| 23 |
|
cco |
⊢ comp |
| 24 |
5 23
|
cfv |
⊢ ( comp ‘ 𝑐 ) |
| 25 |
22 19 24
|
co |
⊢ ( 〈 ( doma ‘ 𝑓 ) , ( doma ‘ 𝑔 ) 〉 ( comp ‘ 𝑐 ) ( coda ‘ 𝑔 ) ) |
| 26 |
17 20
|
cfv |
⊢ ( 2nd ‘ 𝑓 ) |
| 27 |
21 26 25
|
co |
⊢ ( ( 2nd ‘ 𝑔 ) ( 〈 ( doma ‘ 𝑓 ) , ( doma ‘ 𝑔 ) 〉 ( comp ‘ 𝑐 ) ( coda ‘ 𝑔 ) ) ( 2nd ‘ 𝑓 ) ) |
| 28 |
18 19 27
|
cotp |
⊢ 〈 ( doma ‘ 𝑓 ) , ( coda ‘ 𝑔 ) , ( ( 2nd ‘ 𝑔 ) ( 〈 ( doma ‘ 𝑓 ) , ( doma ‘ 𝑔 ) 〉 ( comp ‘ 𝑐 ) ( coda ‘ 𝑔 ) ) ( 2nd ‘ 𝑓 ) ) 〉 |
| 29 |
3 7 6 16 28
|
cmpo |
⊢ ( 𝑔 ∈ ( Arrow ‘ 𝑐 ) , 𝑓 ∈ { ℎ ∈ ( Arrow ‘ 𝑐 ) ∣ ( coda ‘ ℎ ) = ( doma ‘ 𝑔 ) } ↦ 〈 ( doma ‘ 𝑓 ) , ( coda ‘ 𝑔 ) , ( ( 2nd ‘ 𝑔 ) ( 〈 ( doma ‘ 𝑓 ) , ( doma ‘ 𝑔 ) 〉 ( comp ‘ 𝑐 ) ( coda ‘ 𝑔 ) ) ( 2nd ‘ 𝑓 ) ) 〉 ) |
| 30 |
1 2 29
|
cmpt |
⊢ ( 𝑐 ∈ Cat ↦ ( 𝑔 ∈ ( Arrow ‘ 𝑐 ) , 𝑓 ∈ { ℎ ∈ ( Arrow ‘ 𝑐 ) ∣ ( coda ‘ ℎ ) = ( doma ‘ 𝑔 ) } ↦ 〈 ( doma ‘ 𝑓 ) , ( coda ‘ 𝑔 ) , ( ( 2nd ‘ 𝑔 ) ( 〈 ( doma ‘ 𝑓 ) , ( doma ‘ 𝑔 ) 〉 ( comp ‘ 𝑐 ) ( coda ‘ 𝑔 ) ) ( 2nd ‘ 𝑓 ) ) 〉 ) ) |
| 31 |
0 30
|
wceq |
⊢ compa = ( 𝑐 ∈ Cat ↦ ( 𝑔 ∈ ( Arrow ‘ 𝑐 ) , 𝑓 ∈ { ℎ ∈ ( Arrow ‘ 𝑐 ) ∣ ( coda ‘ ℎ ) = ( doma ‘ 𝑔 ) } ↦ 〈 ( doma ‘ 𝑓 ) , ( coda ‘ 𝑔 ) , ( ( 2nd ‘ 𝑔 ) ( 〈 ( doma ‘ 𝑓 ) , ( doma ‘ 𝑔 ) 〉 ( comp ‘ 𝑐 ) ( coda ‘ 𝑔 ) ) ( 2nd ‘ 𝑓 ) ) 〉 ) ) |