Metamath Proof Explorer


Theorem idafval

Description: Value of the identity arrow function. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses idafval.i 𝐼 = ( Ida𝐶 )
idafval.b 𝐵 = ( Base ‘ 𝐶 )
idafval.c ( 𝜑𝐶 ∈ Cat )
idafval.1 1 = ( Id ‘ 𝐶 )
Assertion idafval ( 𝜑𝐼 = ( 𝑥𝐵 ↦ ⟨ 𝑥 , 𝑥 , ( 1𝑥 ) ⟩ ) )

Proof

Step Hyp Ref Expression
1 idafval.i 𝐼 = ( Ida𝐶 )
2 idafval.b 𝐵 = ( Base ‘ 𝐶 )
3 idafval.c ( 𝜑𝐶 ∈ Cat )
4 idafval.1 1 = ( Id ‘ 𝐶 )
5 fveq2 ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = ( Base ‘ 𝐶 ) )
6 5 2 eqtr4di ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = 𝐵 )
7 fveq2 ( 𝑐 = 𝐶 → ( Id ‘ 𝑐 ) = ( Id ‘ 𝐶 ) )
8 7 4 eqtr4di ( 𝑐 = 𝐶 → ( Id ‘ 𝑐 ) = 1 )
9 8 fveq1d ( 𝑐 = 𝐶 → ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) = ( 1𝑥 ) )
10 9 oteq3d ( 𝑐 = 𝐶 → ⟨ 𝑥 , 𝑥 , ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ⟩ = ⟨ 𝑥 , 𝑥 , ( 1𝑥 ) ⟩ )
11 6 10 mpteq12dv ( 𝑐 = 𝐶 → ( 𝑥 ∈ ( Base ‘ 𝑐 ) ↦ ⟨ 𝑥 , 𝑥 , ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ⟩ ) = ( 𝑥𝐵 ↦ ⟨ 𝑥 , 𝑥 , ( 1𝑥 ) ⟩ ) )
12 df-ida Ida = ( 𝑐 ∈ Cat ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) ↦ ⟨ 𝑥 , 𝑥 , ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ⟩ ) )
13 11 12 2 mptfvmpt ( 𝐶 ∈ Cat → ( Ida𝐶 ) = ( 𝑥𝐵 ↦ ⟨ 𝑥 , 𝑥 , ( 1𝑥 ) ⟩ ) )
14 3 13 syl ( 𝜑 → ( Ida𝐶 ) = ( 𝑥𝐵 ↦ ⟨ 𝑥 , 𝑥 , ( 1𝑥 ) ⟩ ) )
15 1 14 syl5eq ( 𝜑𝐼 = ( 𝑥𝐵 ↦ ⟨ 𝑥 , 𝑥 , ( 1𝑥 ) ⟩ ) )