| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idafval.i |
⊢ 𝐼 = ( Ida ‘ 𝐶 ) |
| 2 |
|
idafval.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 3 |
|
idafval.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 4 |
|
idafval.1 |
⊢ 1 = ( Id ‘ 𝐶 ) |
| 5 |
|
fveq2 |
⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = ( Base ‘ 𝐶 ) ) |
| 6 |
5 2
|
eqtr4di |
⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = 𝐵 ) |
| 7 |
|
fveq2 |
⊢ ( 𝑐 = 𝐶 → ( Id ‘ 𝑐 ) = ( Id ‘ 𝐶 ) ) |
| 8 |
7 4
|
eqtr4di |
⊢ ( 𝑐 = 𝐶 → ( Id ‘ 𝑐 ) = 1 ) |
| 9 |
8
|
fveq1d |
⊢ ( 𝑐 = 𝐶 → ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) = ( 1 ‘ 𝑥 ) ) |
| 10 |
9
|
oteq3d |
⊢ ( 𝑐 = 𝐶 → 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) 〉 = 〈 𝑥 , 𝑥 , ( 1 ‘ 𝑥 ) 〉 ) |
| 11 |
6 10
|
mpteq12dv |
⊢ ( 𝑐 = 𝐶 → ( 𝑥 ∈ ( Base ‘ 𝑐 ) ↦ 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) 〉 ) = ( 𝑥 ∈ 𝐵 ↦ 〈 𝑥 , 𝑥 , ( 1 ‘ 𝑥 ) 〉 ) ) |
| 12 |
|
df-ida |
⊢ Ida = ( 𝑐 ∈ Cat ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) ↦ 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) 〉 ) ) |
| 13 |
11 12 2
|
mptfvmpt |
⊢ ( 𝐶 ∈ Cat → ( Ida ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ 〈 𝑥 , 𝑥 , ( 1 ‘ 𝑥 ) 〉 ) ) |
| 14 |
3 13
|
syl |
⊢ ( 𝜑 → ( Ida ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ 〈 𝑥 , 𝑥 , ( 1 ‘ 𝑥 ) 〉 ) ) |
| 15 |
1 14
|
eqtrid |
⊢ ( 𝜑 → 𝐼 = ( 𝑥 ∈ 𝐵 ↦ 〈 𝑥 , 𝑥 , ( 1 ‘ 𝑥 ) 〉 ) ) |