| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idafval.i | ⊢ 𝐼  =  ( Ida ‘ 𝐶 ) | 
						
							| 2 |  | idafval.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 3 |  | idafval.c | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 4 |  | idafval.1 | ⊢  1   =  ( Id ‘ 𝐶 ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑐  =  𝐶  →  ( Base ‘ 𝑐 )  =  ( Base ‘ 𝐶 ) ) | 
						
							| 6 | 5 2 | eqtr4di | ⊢ ( 𝑐  =  𝐶  →  ( Base ‘ 𝑐 )  =  𝐵 ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑐  =  𝐶  →  ( Id ‘ 𝑐 )  =  ( Id ‘ 𝐶 ) ) | 
						
							| 8 | 7 4 | eqtr4di | ⊢ ( 𝑐  =  𝐶  →  ( Id ‘ 𝑐 )  =   1  ) | 
						
							| 9 | 8 | fveq1d | ⊢ ( 𝑐  =  𝐶  →  ( ( Id ‘ 𝑐 ) ‘ 𝑥 )  =  (  1  ‘ 𝑥 ) ) | 
						
							| 10 | 9 | oteq3d | ⊢ ( 𝑐  =  𝐶  →  〈 𝑥 ,  𝑥 ,  ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) 〉  =  〈 𝑥 ,  𝑥 ,  (  1  ‘ 𝑥 ) 〉 ) | 
						
							| 11 | 6 10 | mpteq12dv | ⊢ ( 𝑐  =  𝐶  →  ( 𝑥  ∈  ( Base ‘ 𝑐 )  ↦  〈 𝑥 ,  𝑥 ,  ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) 〉 )  =  ( 𝑥  ∈  𝐵  ↦  〈 𝑥 ,  𝑥 ,  (  1  ‘ 𝑥 ) 〉 ) ) | 
						
							| 12 |  | df-ida | ⊢ Ida  =  ( 𝑐  ∈  Cat  ↦  ( 𝑥  ∈  ( Base ‘ 𝑐 )  ↦  〈 𝑥 ,  𝑥 ,  ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) 〉 ) ) | 
						
							| 13 | 11 12 2 | mptfvmpt | ⊢ ( 𝐶  ∈  Cat  →  ( Ida ‘ 𝐶 )  =  ( 𝑥  ∈  𝐵  ↦  〈 𝑥 ,  𝑥 ,  (  1  ‘ 𝑥 ) 〉 ) ) | 
						
							| 14 | 3 13 | syl | ⊢ ( 𝜑  →  ( Ida ‘ 𝐶 )  =  ( 𝑥  ∈  𝐵  ↦  〈 𝑥 ,  𝑥 ,  (  1  ‘ 𝑥 ) 〉 ) ) | 
						
							| 15 | 1 14 | eqtrid | ⊢ ( 𝜑  →  𝐼  =  ( 𝑥  ∈  𝐵  ↦  〈 𝑥 ,  𝑥 ,  (  1  ‘ 𝑥 ) 〉 ) ) |