Step |
Hyp |
Ref |
Expression |
1 |
|
idafval.i |
⊢ 𝐼 = ( Ida ‘ 𝐶 ) |
2 |
|
idafval.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
idafval.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
4 |
|
idafval.1 |
⊢ 1 = ( Id ‘ 𝐶 ) |
5 |
|
idaval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
1 2 3 4
|
idafval |
⊢ ( 𝜑 → 𝐼 = ( 𝑥 ∈ 𝐵 ↦ 〈 𝑥 , 𝑥 , ( 1 ‘ 𝑥 ) 〉 ) ) |
7 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → 𝑥 = 𝑋 ) |
8 |
7
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 1 ‘ 𝑥 ) = ( 1 ‘ 𝑋 ) ) |
9 |
7 7 8
|
oteq123d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → 〈 𝑥 , 𝑥 , ( 1 ‘ 𝑥 ) 〉 = 〈 𝑋 , 𝑋 , ( 1 ‘ 𝑋 ) 〉 ) |
10 |
|
otex |
⊢ 〈 𝑋 , 𝑋 , ( 1 ‘ 𝑋 ) 〉 ∈ V |
11 |
10
|
a1i |
⊢ ( 𝜑 → 〈 𝑋 , 𝑋 , ( 1 ‘ 𝑋 ) 〉 ∈ V ) |
12 |
6 9 5 11
|
fvmptd |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) = 〈 𝑋 , 𝑋 , ( 1 ‘ 𝑋 ) 〉 ) |