Metamath Proof Explorer


Theorem idaval

Description: Value of the identity arrow function. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses idafval.i 𝐼 = ( Ida𝐶 )
idafval.b 𝐵 = ( Base ‘ 𝐶 )
idafval.c ( 𝜑𝐶 ∈ Cat )
idafval.1 1 = ( Id ‘ 𝐶 )
idaval.x ( 𝜑𝑋𝐵 )
Assertion idaval ( 𝜑 → ( 𝐼𝑋 ) = ⟨ 𝑋 , 𝑋 , ( 1𝑋 ) ⟩ )

Proof

Step Hyp Ref Expression
1 idafval.i 𝐼 = ( Ida𝐶 )
2 idafval.b 𝐵 = ( Base ‘ 𝐶 )
3 idafval.c ( 𝜑𝐶 ∈ Cat )
4 idafval.1 1 = ( Id ‘ 𝐶 )
5 idaval.x ( 𝜑𝑋𝐵 )
6 1 2 3 4 idafval ( 𝜑𝐼 = ( 𝑥𝐵 ↦ ⟨ 𝑥 , 𝑥 , ( 1𝑥 ) ⟩ ) )
7 simpr ( ( 𝜑𝑥 = 𝑋 ) → 𝑥 = 𝑋 )
8 7 fveq2d ( ( 𝜑𝑥 = 𝑋 ) → ( 1𝑥 ) = ( 1𝑋 ) )
9 7 7 8 oteq123d ( ( 𝜑𝑥 = 𝑋 ) → ⟨ 𝑥 , 𝑥 , ( 1𝑥 ) ⟩ = ⟨ 𝑋 , 𝑋 , ( 1𝑋 ) ⟩ )
10 otex 𝑋 , 𝑋 , ( 1𝑋 ) ⟩ ∈ V
11 10 a1i ( 𝜑 → ⟨ 𝑋 , 𝑋 , ( 1𝑋 ) ⟩ ∈ V )
12 6 9 5 11 fvmptd ( 𝜑 → ( 𝐼𝑋 ) = ⟨ 𝑋 , 𝑋 , ( 1𝑋 ) ⟩ )