Metamath Proof Explorer


Theorem ida2

Description: Morphism part of the identity arrow. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses idafval.i 𝐼 = ( Ida𝐶 )
idafval.b 𝐵 = ( Base ‘ 𝐶 )
idafval.c ( 𝜑𝐶 ∈ Cat )
idafval.1 1 = ( Id ‘ 𝐶 )
idaval.x ( 𝜑𝑋𝐵 )
Assertion ida2 ( 𝜑 → ( 2nd ‘ ( 𝐼𝑋 ) ) = ( 1𝑋 ) )

Proof

Step Hyp Ref Expression
1 idafval.i 𝐼 = ( Ida𝐶 )
2 idafval.b 𝐵 = ( Base ‘ 𝐶 )
3 idafval.c ( 𝜑𝐶 ∈ Cat )
4 idafval.1 1 = ( Id ‘ 𝐶 )
5 idaval.x ( 𝜑𝑋𝐵 )
6 1 2 3 4 5 idaval ( 𝜑 → ( 𝐼𝑋 ) = ⟨ 𝑋 , 𝑋 , ( 1𝑋 ) ⟩ )
7 6 fveq2d ( 𝜑 → ( 2nd ‘ ( 𝐼𝑋 ) ) = ( 2nd ‘ ⟨ 𝑋 , 𝑋 , ( 1𝑋 ) ⟩ ) )
8 fvex ( 1𝑋 ) ∈ V
9 ot3rdg ( ( 1𝑋 ) ∈ V → ( 2nd ‘ ⟨ 𝑋 , 𝑋 , ( 1𝑋 ) ⟩ ) = ( 1𝑋 ) )
10 8 9 ax-mp ( 2nd ‘ ⟨ 𝑋 , 𝑋 , ( 1𝑋 ) ⟩ ) = ( 1𝑋 )
11 7 10 eqtrdi ( 𝜑 → ( 2nd ‘ ( 𝐼𝑋 ) ) = ( 1𝑋 ) )