Step |
Hyp |
Ref |
Expression |
1 |
|
idafval.i |
⊢ 𝐼 = ( Ida ‘ 𝐶 ) |
2 |
|
idafval.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
idafval.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
4 |
|
idafval.1 |
⊢ 1 = ( Id ‘ 𝐶 ) |
5 |
|
idaval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
1 2 3 4 5
|
idaval |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) = 〈 𝑋 , 𝑋 , ( 1 ‘ 𝑋 ) 〉 ) |
7 |
6
|
fveq2d |
⊢ ( 𝜑 → ( 2nd ‘ ( 𝐼 ‘ 𝑋 ) ) = ( 2nd ‘ 〈 𝑋 , 𝑋 , ( 1 ‘ 𝑋 ) 〉 ) ) |
8 |
|
fvex |
⊢ ( 1 ‘ 𝑋 ) ∈ V |
9 |
|
ot3rdg |
⊢ ( ( 1 ‘ 𝑋 ) ∈ V → ( 2nd ‘ 〈 𝑋 , 𝑋 , ( 1 ‘ 𝑋 ) 〉 ) = ( 1 ‘ 𝑋 ) ) |
10 |
8 9
|
ax-mp |
⊢ ( 2nd ‘ 〈 𝑋 , 𝑋 , ( 1 ‘ 𝑋 ) 〉 ) = ( 1 ‘ 𝑋 ) |
11 |
7 10
|
eqtrdi |
⊢ ( 𝜑 → ( 2nd ‘ ( 𝐼 ‘ 𝑋 ) ) = ( 1 ‘ 𝑋 ) ) |