Metamath Proof Explorer


Theorem ida2

Description: Morphism part of the identity arrow. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses idafval.i
|- I = ( IdA ` C )
idafval.b
|- B = ( Base ` C )
idafval.c
|- ( ph -> C e. Cat )
idafval.1
|- .1. = ( Id ` C )
idaval.x
|- ( ph -> X e. B )
Assertion ida2
|- ( ph -> ( 2nd ` ( I ` X ) ) = ( .1. ` X ) )

Proof

Step Hyp Ref Expression
1 idafval.i
 |-  I = ( IdA ` C )
2 idafval.b
 |-  B = ( Base ` C )
3 idafval.c
 |-  ( ph -> C e. Cat )
4 idafval.1
 |-  .1. = ( Id ` C )
5 idaval.x
 |-  ( ph -> X e. B )
6 1 2 3 4 5 idaval
 |-  ( ph -> ( I ` X ) = <. X , X , ( .1. ` X ) >. )
7 6 fveq2d
 |-  ( ph -> ( 2nd ` ( I ` X ) ) = ( 2nd ` <. X , X , ( .1. ` X ) >. ) )
8 fvex
 |-  ( .1. ` X ) e. _V
9 ot3rdg
 |-  ( ( .1. ` X ) e. _V -> ( 2nd ` <. X , X , ( .1. ` X ) >. ) = ( .1. ` X ) )
10 8 9 ax-mp
 |-  ( 2nd ` <. X , X , ( .1. ` X ) >. ) = ( .1. ` X )
11 7 10 eqtrdi
 |-  ( ph -> ( 2nd ` ( I ` X ) ) = ( .1. ` X ) )