| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idafval.i |
|- I = ( IdA ` C ) |
| 2 |
|
idafval.b |
|- B = ( Base ` C ) |
| 3 |
|
idafval.c |
|- ( ph -> C e. Cat ) |
| 4 |
|
idafval.1 |
|- .1. = ( Id ` C ) |
| 5 |
|
idaval.x |
|- ( ph -> X e. B ) |
| 6 |
1 2 3 4 5
|
idaval |
|- ( ph -> ( I ` X ) = <. X , X , ( .1. ` X ) >. ) |
| 7 |
6
|
fveq2d |
|- ( ph -> ( 2nd ` ( I ` X ) ) = ( 2nd ` <. X , X , ( .1. ` X ) >. ) ) |
| 8 |
|
fvex |
|- ( .1. ` X ) e. _V |
| 9 |
|
ot3rdg |
|- ( ( .1. ` X ) e. _V -> ( 2nd ` <. X , X , ( .1. ` X ) >. ) = ( .1. ` X ) ) |
| 10 |
8 9
|
ax-mp |
|- ( 2nd ` <. X , X , ( .1. ` X ) >. ) = ( .1. ` X ) |
| 11 |
7 10
|
eqtrdi |
|- ( ph -> ( 2nd ` ( I ` X ) ) = ( .1. ` X ) ) |