| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idafval.i |  |-  I = ( IdA ` C ) | 
						
							| 2 |  | idafval.b |  |-  B = ( Base ` C ) | 
						
							| 3 |  | idafval.c |  |-  ( ph -> C e. Cat ) | 
						
							| 4 |  | idafval.1 |  |-  .1. = ( Id ` C ) | 
						
							| 5 |  | idaval.x |  |-  ( ph -> X e. B ) | 
						
							| 6 | 1 2 3 4 5 | idaval |  |-  ( ph -> ( I ` X ) = <. X , X , ( .1. ` X ) >. ) | 
						
							| 7 | 6 | fveq2d |  |-  ( ph -> ( 2nd ` ( I ` X ) ) = ( 2nd ` <. X , X , ( .1. ` X ) >. ) ) | 
						
							| 8 |  | fvex |  |-  ( .1. ` X ) e. _V | 
						
							| 9 |  | ot3rdg |  |-  ( ( .1. ` X ) e. _V -> ( 2nd ` <. X , X , ( .1. ` X ) >. ) = ( .1. ` X ) ) | 
						
							| 10 | 8 9 | ax-mp |  |-  ( 2nd ` <. X , X , ( .1. ` X ) >. ) = ( .1. ` X ) | 
						
							| 11 | 7 10 | eqtrdi |  |-  ( ph -> ( 2nd ` ( I ` X ) ) = ( .1. ` X ) ) |