Description: Definition of the identity arrow, which is just the identity morphism tagged with its domain and codomain. (Contributed by FL, 26-Oct-2007) (Revised by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ida | ⊢ Ida = ( 𝑐 ∈ Cat ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) ↦ 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cida | ⊢ Ida | |
| 1 | vc | ⊢ 𝑐 | |
| 2 | ccat | ⊢ Cat | |
| 3 | vx | ⊢ 𝑥 | |
| 4 | cbs | ⊢ Base | |
| 5 | 1 | cv | ⊢ 𝑐 |
| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑐 ) |
| 7 | 3 | cv | ⊢ 𝑥 |
| 8 | ccid | ⊢ Id | |
| 9 | 5 8 | cfv | ⊢ ( Id ‘ 𝑐 ) |
| 10 | 7 9 | cfv | ⊢ ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) |
| 11 | 7 7 10 | cotp | ⊢ 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) 〉 |
| 12 | 3 6 11 | cmpt | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑐 ) ↦ 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) 〉 ) |
| 13 | 1 2 12 | cmpt | ⊢ ( 𝑐 ∈ Cat ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) ↦ 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) 〉 ) ) |
| 14 | 0 13 | wceq | ⊢ Ida = ( 𝑐 ∈ Cat ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) ↦ 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) 〉 ) ) |