Description: Definition of the identity arrow, which is just the identity morphism tagged with its domain and codomain. (Contributed by FL, 26-Oct-2007) (Revised by Mario Carneiro, 11-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | df-ida | ⊢ Ida = ( 𝑐 ∈ Cat ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) ↦ 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) 〉 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cida | ⊢ Ida | |
1 | vc | ⊢ 𝑐 | |
2 | ccat | ⊢ Cat | |
3 | vx | ⊢ 𝑥 | |
4 | cbs | ⊢ Base | |
5 | 1 | cv | ⊢ 𝑐 |
6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑐 ) |
7 | 3 | cv | ⊢ 𝑥 |
8 | ccid | ⊢ Id | |
9 | 5 8 | cfv | ⊢ ( Id ‘ 𝑐 ) |
10 | 7 9 | cfv | ⊢ ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) |
11 | 7 7 10 | cotp | ⊢ 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) 〉 |
12 | 3 6 11 | cmpt | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑐 ) ↦ 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) 〉 ) |
13 | 1 2 12 | cmpt | ⊢ ( 𝑐 ∈ Cat ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) ↦ 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) 〉 ) ) |
14 | 0 13 | wceq | ⊢ Ida = ( 𝑐 ∈ Cat ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) ↦ 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) 〉 ) ) |