Metamath Proof Explorer


Theorem iedgvalsnop

Description: Degenerated case 2 for edges: The set of indexed edges of a singleton containing an ordered pair with equal components is the singleton containing the component. (Contributed by AV, 24-Sep-2020) (Proof shortened by AV, 15-Jul-2022) (Avoid depending on this detail.)

Ref Expression
Hypotheses vtxvalsnop.b 𝐵 ∈ V
vtxvalsnop.g 𝐺 = { ⟨ 𝐵 , 𝐵 ⟩ }
Assertion iedgvalsnop ( iEdg ‘ 𝐺 ) = { 𝐵 }

Proof

Step Hyp Ref Expression
1 vtxvalsnop.b 𝐵 ∈ V
2 vtxvalsnop.g 𝐺 = { ⟨ 𝐵 , 𝐵 ⟩ }
3 2 fveq2i ( iEdg ‘ 𝐺 ) = ( iEdg ‘ { ⟨ 𝐵 , 𝐵 ⟩ } )
4 1 snopeqopsnid { ⟨ 𝐵 , 𝐵 ⟩ } = ⟨ { 𝐵 } , { 𝐵 } ⟩
5 4 fveq2i ( iEdg ‘ { ⟨ 𝐵 , 𝐵 ⟩ } ) = ( iEdg ‘ ⟨ { 𝐵 } , { 𝐵 } ⟩ )
6 snex { 𝐵 } ∈ V
7 6 6 opiedgfvi ( iEdg ‘ ⟨ { 𝐵 } , { 𝐵 } ⟩ ) = { 𝐵 }
8 3 5 7 3eqtri ( iEdg ‘ 𝐺 ) = { 𝐵 }