Metamath Proof Explorer


Theorem ifpdfor2

Description: Define or in terms of conditional logic operator. (Contributed by RP, 20-Apr-2020)

Ref Expression
Assertion ifpdfor2 ( ( 𝜑𝜓 ) ↔ if- ( 𝜑 , 𝜑 , 𝜓 ) )

Proof

Step Hyp Ref Expression
1 pm2.1 ( ¬ 𝜑𝜑 )
2 1 biantrur ( ( 𝜑𝜓 ) ↔ ( ( ¬ 𝜑𝜑 ) ∧ ( 𝜑𝜓 ) ) )
3 dfifp4 ( if- ( 𝜑 , 𝜑 , 𝜓 ) ↔ ( ( ¬ 𝜑𝜑 ) ∧ ( 𝜑𝜓 ) ) )
4 2 3 bitr4i ( ( 𝜑𝜓 ) ↔ if- ( 𝜑 , 𝜑 , 𝜓 ) )