Metamath Proof Explorer


Theorem ifpid3g

Description: Restate wff as conditional logic operator. (Contributed by RP, 20-Apr-2020)

Ref Expression
Assertion ifpid3g ( ( 𝜒 ↔ if- ( 𝜑 , 𝜓 , 𝜒 ) ) ↔ ( ( ( 𝜑𝜓 ) → 𝜒 ) ∧ ( ( 𝜑𝜒 ) → 𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 olc ( 𝜒 → ( 𝜑𝜒 ) )
2 1 1 pm3.2i ( ( 𝜒 → ( 𝜑𝜒 ) ) ∧ ( 𝜒 → ( 𝜑𝜒 ) ) )
3 ifpidg ( ( 𝜒 ↔ if- ( 𝜑 , 𝜓 , 𝜒 ) ) ↔ ( ( ( ( 𝜑𝜓 ) → 𝜒 ) ∧ ( ( 𝜑𝜒 ) → 𝜓 ) ) ∧ ( ( 𝜒 → ( 𝜑𝜒 ) ) ∧ ( 𝜒 → ( 𝜑𝜒 ) ) ) ) )
4 2 3 mpbiran2 ( ( 𝜒 ↔ if- ( 𝜑 , 𝜓 , 𝜒 ) ) ↔ ( ( ( 𝜑𝜓 ) → 𝜒 ) ∧ ( ( 𝜑𝜒 ) → 𝜓 ) ) )