Metamath Proof Explorer


Theorem ifpid2g

Description: Restate wff as conditional logic operator. (Contributed by RP, 20-Apr-2020)

Ref Expression
Assertion ifpid2g ( ( 𝜓 ↔ if- ( 𝜑 , 𝜓 , 𝜒 ) ) ↔ ( ( 𝜓 → ( 𝜑𝜒 ) ) ∧ ( 𝜒 → ( 𝜑𝜓 ) ) ) )

Proof

Step Hyp Ref Expression
1 ifpidg ( ( 𝜓 ↔ if- ( 𝜑 , 𝜓 , 𝜒 ) ) ↔ ( ( ( ( 𝜑𝜓 ) → 𝜓 ) ∧ ( ( 𝜑𝜓 ) → 𝜓 ) ) ∧ ( ( 𝜒 → ( 𝜑𝜓 ) ) ∧ ( 𝜓 → ( 𝜑𝜒 ) ) ) ) )
2 simpr ( ( 𝜑𝜓 ) → 𝜓 )
3 2 2 pm3.2i ( ( ( 𝜑𝜓 ) → 𝜓 ) ∧ ( ( 𝜑𝜓 ) → 𝜓 ) )
4 3 biantrur ( ( ( 𝜒 → ( 𝜑𝜓 ) ) ∧ ( 𝜓 → ( 𝜑𝜒 ) ) ) ↔ ( ( ( ( 𝜑𝜓 ) → 𝜓 ) ∧ ( ( 𝜑𝜓 ) → 𝜓 ) ) ∧ ( ( 𝜒 → ( 𝜑𝜓 ) ) ∧ ( 𝜓 → ( 𝜑𝜒 ) ) ) ) )
5 ancom ( ( ( 𝜒 → ( 𝜑𝜓 ) ) ∧ ( 𝜓 → ( 𝜑𝜒 ) ) ) ↔ ( ( 𝜓 → ( 𝜑𝜒 ) ) ∧ ( 𝜒 → ( 𝜑𝜓 ) ) ) )
6 1 4 5 3bitr2i ( ( 𝜓 ↔ if- ( 𝜑 , 𝜓 , 𝜒 ) ) ↔ ( ( 𝜓 → ( 𝜑𝜒 ) ) ∧ ( 𝜒 → ( 𝜑𝜓 ) ) ) )