Metamath Proof Explorer


Theorem ifpid1g

Description: Restate wff as conditional logic operator. (Contributed by RP, 20-Apr-2020)

Ref Expression
Assertion ifpid1g ( ( 𝜑 ↔ if- ( 𝜑 , 𝜓 , 𝜒 ) ) ↔ ( ( 𝜒𝜑 ) ∧ ( 𝜑𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 ifpidg ( ( 𝜑 ↔ if- ( 𝜑 , 𝜓 , 𝜒 ) ) ↔ ( ( ( ( 𝜑𝜓 ) → 𝜑 ) ∧ ( ( 𝜑𝜑 ) → 𝜓 ) ) ∧ ( ( 𝜒 → ( 𝜑𝜑 ) ) ∧ ( 𝜑 → ( 𝜑𝜒 ) ) ) ) )
2 ancom ( ( ( ( ( 𝜑𝜓 ) → 𝜑 ) ∧ ( ( 𝜑𝜑 ) → 𝜓 ) ) ∧ ( ( 𝜒 → ( 𝜑𝜑 ) ) ∧ ( 𝜑 → ( 𝜑𝜒 ) ) ) ) ↔ ( ( ( 𝜒 → ( 𝜑𝜑 ) ) ∧ ( 𝜑 → ( 𝜑𝜒 ) ) ) ∧ ( ( ( 𝜑𝜓 ) → 𝜑 ) ∧ ( ( 𝜑𝜑 ) → 𝜓 ) ) ) )
3 pm4.25 ( 𝜑 ↔ ( 𝜑𝜑 ) )
4 3 imbi2i ( ( 𝜒𝜑 ) ↔ ( 𝜒 → ( 𝜑𝜑 ) ) )
5 orc ( 𝜑 → ( 𝜑𝜒 ) )
6 5 biantru ( ( 𝜒 → ( 𝜑𝜑 ) ) ↔ ( ( 𝜒 → ( 𝜑𝜑 ) ) ∧ ( 𝜑 → ( 𝜑𝜒 ) ) ) )
7 4 6 bitr2i ( ( ( 𝜒 → ( 𝜑𝜑 ) ) ∧ ( 𝜑 → ( 𝜑𝜒 ) ) ) ↔ ( 𝜒𝜑 ) )
8 pm4.24 ( 𝜑 ↔ ( 𝜑𝜑 ) )
9 8 imbi1i ( ( 𝜑𝜓 ) ↔ ( ( 𝜑𝜑 ) → 𝜓 ) )
10 simpl ( ( 𝜑𝜓 ) → 𝜑 )
11 10 biantrur ( ( ( 𝜑𝜑 ) → 𝜓 ) ↔ ( ( ( 𝜑𝜓 ) → 𝜑 ) ∧ ( ( 𝜑𝜑 ) → 𝜓 ) ) )
12 9 11 bitr2i ( ( ( ( 𝜑𝜓 ) → 𝜑 ) ∧ ( ( 𝜑𝜑 ) → 𝜓 ) ) ↔ ( 𝜑𝜓 ) )
13 7 12 anbi12i ( ( ( ( 𝜒 → ( 𝜑𝜑 ) ) ∧ ( 𝜑 → ( 𝜑𝜒 ) ) ) ∧ ( ( ( 𝜑𝜓 ) → 𝜑 ) ∧ ( ( 𝜑𝜑 ) → 𝜓 ) ) ) ↔ ( ( 𝜒𝜑 ) ∧ ( 𝜑𝜓 ) ) )
14 1 2 13 3bitri ( ( 𝜑 ↔ if- ( 𝜑 , 𝜓 , 𝜒 ) ) ↔ ( ( 𝜒𝜑 ) ∧ ( 𝜑𝜓 ) ) )