Step |
Hyp |
Ref |
Expression |
1 |
|
ifpidg |
⊢ ( ( ( 𝜑 → 𝜓 ) ↔ if- ( 𝜒 , 𝜓 , ¬ 𝜑 ) ) ↔ ( ( ( ( 𝜒 ∧ 𝜓 ) → ( 𝜑 → 𝜓 ) ) ∧ ( ( 𝜒 ∧ ( 𝜑 → 𝜓 ) ) → 𝜓 ) ) ∧ ( ( ¬ 𝜑 → ( 𝜒 ∨ ( 𝜑 → 𝜓 ) ) ) ∧ ( ( 𝜑 → 𝜓 ) → ( 𝜒 ∨ ¬ 𝜑 ) ) ) ) ) |
2 |
|
dfor2 |
⊢ ( ( 𝜑 ∨ 𝜓 ) ↔ ( ( 𝜑 → 𝜓 ) → 𝜓 ) ) |
3 |
2
|
imbi2i |
⊢ ( ( 𝜒 → ( 𝜑 ∨ 𝜓 ) ) ↔ ( 𝜒 → ( ( 𝜑 → 𝜓 ) → 𝜓 ) ) ) |
4 |
|
impexp |
⊢ ( ( ( 𝜒 ∧ ( 𝜑 → 𝜓 ) ) → 𝜓 ) ↔ ( 𝜒 → ( ( 𝜑 → 𝜓 ) → 𝜓 ) ) ) |
5 |
|
ax-1 |
⊢ ( 𝜓 → ( 𝜑 → 𝜓 ) ) |
6 |
5
|
adantl |
⊢ ( ( 𝜒 ∧ 𝜓 ) → ( 𝜑 → 𝜓 ) ) |
7 |
6
|
biantrur |
⊢ ( ( ( 𝜒 ∧ ( 𝜑 → 𝜓 ) ) → 𝜓 ) ↔ ( ( ( 𝜒 ∧ 𝜓 ) → ( 𝜑 → 𝜓 ) ) ∧ ( ( 𝜒 ∧ ( 𝜑 → 𝜓 ) ) → 𝜓 ) ) ) |
8 |
3 4 7
|
3bitr2i |
⊢ ( ( 𝜒 → ( 𝜑 ∨ 𝜓 ) ) ↔ ( ( ( 𝜒 ∧ 𝜓 ) → ( 𝜑 → 𝜓 ) ) ∧ ( ( 𝜒 ∧ ( 𝜑 → 𝜓 ) ) → 𝜓 ) ) ) |
9 |
|
impexp |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) |
10 |
|
imdi |
⊢ ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) ↔ ( ( 𝜑 → 𝜓 ) → ( 𝜑 → 𝜒 ) ) ) |
11 |
|
imor |
⊢ ( ( 𝜑 → 𝜒 ) ↔ ( ¬ 𝜑 ∨ 𝜒 ) ) |
12 |
|
orcom |
⊢ ( ( ¬ 𝜑 ∨ 𝜒 ) ↔ ( 𝜒 ∨ ¬ 𝜑 ) ) |
13 |
11 12
|
bitri |
⊢ ( ( 𝜑 → 𝜒 ) ↔ ( 𝜒 ∨ ¬ 𝜑 ) ) |
14 |
13
|
imbi2i |
⊢ ( ( ( 𝜑 → 𝜓 ) → ( 𝜑 → 𝜒 ) ) ↔ ( ( 𝜑 → 𝜓 ) → ( 𝜒 ∨ ¬ 𝜑 ) ) ) |
15 |
10 14
|
bitri |
⊢ ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) ↔ ( ( 𝜑 → 𝜓 ) → ( 𝜒 ∨ ¬ 𝜑 ) ) ) |
16 |
9 15
|
bitri |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) ↔ ( ( 𝜑 → 𝜓 ) → ( 𝜒 ∨ ¬ 𝜑 ) ) ) |
17 |
|
pm2.21 |
⊢ ( ¬ 𝜑 → ( 𝜑 → 𝜓 ) ) |
18 |
17
|
olcd |
⊢ ( ¬ 𝜑 → ( 𝜒 ∨ ( 𝜑 → 𝜓 ) ) ) |
19 |
18
|
biantrur |
⊢ ( ( ( 𝜑 → 𝜓 ) → ( 𝜒 ∨ ¬ 𝜑 ) ) ↔ ( ( ¬ 𝜑 → ( 𝜒 ∨ ( 𝜑 → 𝜓 ) ) ) ∧ ( ( 𝜑 → 𝜓 ) → ( 𝜒 ∨ ¬ 𝜑 ) ) ) ) |
20 |
16 19
|
bitri |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) ↔ ( ( ¬ 𝜑 → ( 𝜒 ∨ ( 𝜑 → 𝜓 ) ) ) ∧ ( ( 𝜑 → 𝜓 ) → ( 𝜒 ∨ ¬ 𝜑 ) ) ) ) |
21 |
8 20
|
anbi12i |
⊢ ( ( ( 𝜒 → ( 𝜑 ∨ 𝜓 ) ) ∧ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) ) ↔ ( ( ( ( 𝜒 ∧ 𝜓 ) → ( 𝜑 → 𝜓 ) ) ∧ ( ( 𝜒 ∧ ( 𝜑 → 𝜓 ) ) → 𝜓 ) ) ∧ ( ( ¬ 𝜑 → ( 𝜒 ∨ ( 𝜑 → 𝜓 ) ) ) ∧ ( ( 𝜑 → 𝜓 ) → ( 𝜒 ∨ ¬ 𝜑 ) ) ) ) ) |
22 |
|
ancom |
⊢ ( ( ( 𝜒 → ( 𝜑 ∨ 𝜓 ) ) ∧ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) ) ↔ ( ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) ∧ ( 𝜒 → ( 𝜑 ∨ 𝜓 ) ) ) ) |
23 |
1 21 22
|
3bitr2i |
⊢ ( ( ( 𝜑 → 𝜓 ) ↔ if- ( 𝜒 , 𝜓 , ¬ 𝜑 ) ) ↔ ( ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) ∧ ( 𝜒 → ( 𝜑 ∨ 𝜓 ) ) ) ) |