Metamath Proof Explorer


Theorem ifpim3

Description: Restate implication as conditional logic operator. (Contributed by RP, 25-Apr-2020)

Ref Expression
Assertion ifpim3 ( ( 𝜑𝜓 ) ↔ if- ( 𝜑 , 𝜓 , ¬ 𝜑 ) )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝜑𝜓 ) → 𝜑 )
2 orc ( 𝜑 → ( 𝜑𝜓 ) )
3 ifpim23g ( ( ( 𝜑𝜓 ) ↔ if- ( 𝜑 , 𝜓 , ¬ 𝜑 ) ) ↔ ( ( ( 𝜑𝜓 ) → 𝜑 ) ∧ ( 𝜑 → ( 𝜑𝜓 ) ) ) )
4 1 2 3 mpbir2an ( ( 𝜑𝜓 ) ↔ if- ( 𝜑 , 𝜓 , ¬ 𝜑 ) )