Description: Restate negated implication as conditional logic operator. (Contributed by RP, 25-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ifpnim1 | ⊢ ( ¬ ( 𝜑 → 𝜓 ) ↔ if- ( 𝜑 , ¬ 𝜓 , 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifpnot23c | ⊢ ( ¬ if- ( 𝜑 , 𝜓 , ¬ 𝜑 ) ↔ if- ( 𝜑 , ¬ 𝜓 , 𝜑 ) ) | |
| 2 | ifpim3 | ⊢ ( ( 𝜑 → 𝜓 ) ↔ if- ( 𝜑 , 𝜓 , ¬ 𝜑 ) ) | |
| 3 | 1 2 | xchnxbir | ⊢ ( ¬ ( 𝜑 → 𝜓 ) ↔ if- ( 𝜑 , ¬ 𝜓 , 𝜑 ) ) |