Metamath Proof Explorer


Theorem ifpnim1

Description: Restate negated implication as conditional logic operator. (Contributed by RP, 25-Apr-2020)

Ref Expression
Assertion ifpnim1 ¬φψif-φ¬ψφ

Proof

Step Hyp Ref Expression
1 ifpnot23c ¬if-φψ¬φif-φ¬ψφ
2 ifpim3 φψif-φψ¬φ
3 1 2 xchnxbir ¬φψif-φ¬ψφ