Metamath Proof Explorer


Theorem ifpnot23c

Description: Negation of conditional logical operator. (Contributed by RP, 25-Apr-2020)

Ref Expression
Assertion ifpnot23c ¬ if- φ ψ ¬ χ if- φ ¬ ψ χ

Proof

Step Hyp Ref Expression
1 ifpnot23 ¬ if- φ ψ ¬ χ if- φ ¬ ψ ¬ ¬ χ
2 notnotb χ ¬ ¬ χ
3 ifpbi3 χ ¬ ¬ χ if- φ ¬ ψ χ if- φ ¬ ψ ¬ ¬ χ
4 2 3 ax-mp if- φ ¬ ψ χ if- φ ¬ ψ ¬ ¬ χ
5 1 4 bitr4i ¬ if- φ ψ ¬ χ if- φ ¬ ψ χ