Description: Negation of conditional logical operator. (Contributed by RP, 25-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ifpnot23c | ⊢ ( ¬ if- ( 𝜑 , 𝜓 , ¬ 𝜒 ) ↔ if- ( 𝜑 , ¬ 𝜓 , 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifpnot23 | ⊢ ( ¬ if- ( 𝜑 , 𝜓 , ¬ 𝜒 ) ↔ if- ( 𝜑 , ¬ 𝜓 , ¬ ¬ 𝜒 ) ) | |
| 2 | notnotb | ⊢ ( 𝜒 ↔ ¬ ¬ 𝜒 ) | |
| 3 | ifpbi3 | ⊢ ( ( 𝜒 ↔ ¬ ¬ 𝜒 ) → ( if- ( 𝜑 , ¬ 𝜓 , 𝜒 ) ↔ if- ( 𝜑 , ¬ 𝜓 , ¬ ¬ 𝜒 ) ) ) | |
| 4 | 2 3 | ax-mp | ⊢ ( if- ( 𝜑 , ¬ 𝜓 , 𝜒 ) ↔ if- ( 𝜑 , ¬ 𝜓 , ¬ ¬ 𝜒 ) ) |
| 5 | 1 4 | bitr4i | ⊢ ( ¬ if- ( 𝜑 , 𝜓 , ¬ 𝜒 ) ↔ if- ( 𝜑 , ¬ 𝜓 , 𝜒 ) ) |