Description: Negation of conditional logical operator. (Contributed by RP, 25-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | ifpnot23d | ⊢ ( ¬ if- ( 𝜑 , ¬ 𝜓 , ¬ 𝜒 ) ↔ if- ( 𝜑 , 𝜓 , 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifpnot23 | ⊢ ( ¬ if- ( 𝜑 , ¬ 𝜓 , ¬ 𝜒 ) ↔ if- ( 𝜑 , ¬ ¬ 𝜓 , ¬ ¬ 𝜒 ) ) | |
2 | notnotb | ⊢ ( 𝜓 ↔ ¬ ¬ 𝜓 ) | |
3 | notnotb | ⊢ ( 𝜒 ↔ ¬ ¬ 𝜒 ) | |
4 | ifpbi23 | ⊢ ( ( ( 𝜓 ↔ ¬ ¬ 𝜓 ) ∧ ( 𝜒 ↔ ¬ ¬ 𝜒 ) ) → ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ if- ( 𝜑 , ¬ ¬ 𝜓 , ¬ ¬ 𝜒 ) ) ) | |
5 | 2 3 4 | mp2an | ⊢ ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ if- ( 𝜑 , ¬ ¬ 𝜓 , ¬ ¬ 𝜒 ) ) |
6 | 1 5 | bitr4i | ⊢ ( ¬ if- ( 𝜑 , ¬ 𝜓 , ¬ 𝜒 ) ↔ if- ( 𝜑 , 𝜓 , 𝜒 ) ) |