Metamath Proof Explorer


Theorem ifpnot23d

Description: Negation of conditional logical operator. (Contributed by RP, 25-Apr-2020)

Ref Expression
Assertion ifpnot23d ( ¬ if- ( 𝜑 , ¬ 𝜓 , ¬ 𝜒 ) ↔ if- ( 𝜑 , 𝜓 , 𝜒 ) )

Proof

Step Hyp Ref Expression
1 ifpnot23 ( ¬ if- ( 𝜑 , ¬ 𝜓 , ¬ 𝜒 ) ↔ if- ( 𝜑 , ¬ ¬ 𝜓 , ¬ ¬ 𝜒 ) )
2 notnotb ( 𝜓 ↔ ¬ ¬ 𝜓 )
3 notnotb ( 𝜒 ↔ ¬ ¬ 𝜒 )
4 ifpbi23 ( ( ( 𝜓 ↔ ¬ ¬ 𝜓 ) ∧ ( 𝜒 ↔ ¬ ¬ 𝜒 ) ) → ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ if- ( 𝜑 , ¬ ¬ 𝜓 , ¬ ¬ 𝜒 ) ) )
5 2 3 4 mp2an ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ if- ( 𝜑 , ¬ ¬ 𝜓 , ¬ ¬ 𝜒 ) )
6 1 5 bitr4i ( ¬ if- ( 𝜑 , ¬ 𝜓 , ¬ 𝜒 ) ↔ if- ( 𝜑 , 𝜓 , 𝜒 ) )