Description: Define nand as conditional logic operator. (Contributed by RP, 20-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | ifpdfnan | ⊢ ( ( 𝜑 ⊼ 𝜓 ) ↔ if- ( 𝜑 , ¬ 𝜓 , ⊤ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nan | ⊢ ( ( 𝜑 ⊼ 𝜓 ) ↔ ¬ ( 𝜑 ∧ 𝜓 ) ) | |
2 | ifpdfan | ⊢ ( ( 𝜑 ∧ 𝜓 ) ↔ if- ( 𝜑 , 𝜓 , ⊥ ) ) | |
3 | 2 | notbii | ⊢ ( ¬ ( 𝜑 ∧ 𝜓 ) ↔ ¬ if- ( 𝜑 , 𝜓 , ⊥ ) ) |
4 | ifpnot23 | ⊢ ( ¬ if- ( 𝜑 , 𝜓 , ⊥ ) ↔ if- ( 𝜑 , ¬ 𝜓 , ¬ ⊥ ) ) | |
5 | notfal | ⊢ ( ¬ ⊥ ↔ ⊤ ) | |
6 | ifpbi3 | ⊢ ( ( ¬ ⊥ ↔ ⊤ ) → ( if- ( 𝜑 , ¬ 𝜓 , ¬ ⊥ ) ↔ if- ( 𝜑 , ¬ 𝜓 , ⊤ ) ) ) | |
7 | 5 6 | ax-mp | ⊢ ( if- ( 𝜑 , ¬ 𝜓 , ¬ ⊥ ) ↔ if- ( 𝜑 , ¬ 𝜓 , ⊤ ) ) |
8 | 4 7 | bitri | ⊢ ( ¬ if- ( 𝜑 , 𝜓 , ⊥ ) ↔ if- ( 𝜑 , ¬ 𝜓 , ⊤ ) ) |
9 | 1 3 8 | 3bitri | ⊢ ( ( 𝜑 ⊼ 𝜓 ) ↔ if- ( 𝜑 , ¬ 𝜓 , ⊤ ) ) |