Metamath Proof Explorer


Theorem ifpdfnan

Description: Define nand as conditional logic operator. (Contributed by RP, 20-Apr-2020)

Ref Expression
Assertion ifpdfnan ( ( 𝜑𝜓 ) ↔ if- ( 𝜑 , ¬ 𝜓 , ⊤ ) )

Proof

Step Hyp Ref Expression
1 df-nan ( ( 𝜑𝜓 ) ↔ ¬ ( 𝜑𝜓 ) )
2 ifpdfan ( ( 𝜑𝜓 ) ↔ if- ( 𝜑 , 𝜓 , ⊥ ) )
3 2 notbii ( ¬ ( 𝜑𝜓 ) ↔ ¬ if- ( 𝜑 , 𝜓 , ⊥ ) )
4 ifpnot23 ( ¬ if- ( 𝜑 , 𝜓 , ⊥ ) ↔ if- ( 𝜑 , ¬ 𝜓 , ¬ ⊥ ) )
5 notfal ( ¬ ⊥ ↔ ⊤ )
6 ifpbi3 ( ( ¬ ⊥ ↔ ⊤ ) → ( if- ( 𝜑 , ¬ 𝜓 , ¬ ⊥ ) ↔ if- ( 𝜑 , ¬ 𝜓 , ⊤ ) ) )
7 5 6 ax-mp ( if- ( 𝜑 , ¬ 𝜓 , ¬ ⊥ ) ↔ if- ( 𝜑 , ¬ 𝜓 , ⊤ ) )
8 4 7 bitri ( ¬ if- ( 𝜑 , 𝜓 , ⊥ ) ↔ if- ( 𝜑 , ¬ 𝜓 , ⊤ ) )
9 1 3 8 3bitri ( ( 𝜑𝜓 ) ↔ if- ( 𝜑 , ¬ 𝜓 , ⊤ ) )