Metamath Proof Explorer


Theorem ifpdfnan

Description: Define nand as conditional logic operator. (Contributed by RP, 20-Apr-2020)

Ref Expression
Assertion ifpdfnan
|- ( ( ph -/\ ps ) <-> if- ( ph , -. ps , T. ) )

Proof

Step Hyp Ref Expression
1 df-nan
 |-  ( ( ph -/\ ps ) <-> -. ( ph /\ ps ) )
2 ifpdfan
 |-  ( ( ph /\ ps ) <-> if- ( ph , ps , F. ) )
3 2 notbii
 |-  ( -. ( ph /\ ps ) <-> -. if- ( ph , ps , F. ) )
4 ifpnot23
 |-  ( -. if- ( ph , ps , F. ) <-> if- ( ph , -. ps , -. F. ) )
5 notfal
 |-  ( -. F. <-> T. )
6 ifpbi3
 |-  ( ( -. F. <-> T. ) -> ( if- ( ph , -. ps , -. F. ) <-> if- ( ph , -. ps , T. ) ) )
7 5 6 ax-mp
 |-  ( if- ( ph , -. ps , -. F. ) <-> if- ( ph , -. ps , T. ) )
8 4 7 bitri
 |-  ( -. if- ( ph , ps , F. ) <-> if- ( ph , -. ps , T. ) )
9 1 3 8 3bitri
 |-  ( ( ph -/\ ps ) <-> if- ( ph , -. ps , T. ) )