Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Short Studies
Additional work on conditional logical operator
ifpdfnan
Next ⟩
ifpdfxor
Metamath Proof Explorer
Ascii
Unicode
Theorem
ifpdfnan
Description:
Define nand as conditional logic operator.
(Contributed by
RP
, 20-Apr-2020)
Ref
Expression
Assertion
ifpdfnan
⊢
φ
⊼
ψ
↔
if-
φ
¬
ψ
⊤
Proof
Step
Hyp
Ref
Expression
1
df-nan
⊢
φ
⊼
ψ
↔
¬
φ
∧
ψ
2
ifpdfan
⊢
φ
∧
ψ
↔
if-
φ
ψ
⊥
3
2
notbii
⊢
¬
φ
∧
ψ
↔
¬
if-
φ
ψ
⊥
4
ifpnot23
⊢
¬
if-
φ
ψ
⊥
↔
if-
φ
¬
ψ
¬
⊥
5
notfal
⊢
¬
⊥
↔
⊤
6
ifpbi3
⊢
¬
⊥
↔
⊤
→
if-
φ
¬
ψ
¬
⊥
↔
if-
φ
¬
ψ
⊤
7
5
6
ax-mp
⊢
if-
φ
¬
ψ
¬
⊥
↔
if-
φ
¬
ψ
⊤
8
4
7
bitri
⊢
¬
if-
φ
ψ
⊥
↔
if-
φ
¬
ψ
⊤
9
1
3
8
3bitri
⊢
φ
⊼
ψ
↔
if-
φ
¬
ψ
⊤