Metamath Proof Explorer


Theorem ifpdfnan

Description: Define nand as conditional logic operator. (Contributed by RP, 20-Apr-2020)

Ref Expression
Assertion ifpdfnan φ ψ if- φ ¬ ψ

Proof

Step Hyp Ref Expression
1 df-nan φ ψ ¬ φ ψ
2 ifpdfan φ ψ if- φ ψ
3 2 notbii ¬ φ ψ ¬ if- φ ψ
4 ifpnot23 ¬ if- φ ψ if- φ ¬ ψ ¬
5 notfal ¬
6 ifpbi3 ¬ if- φ ¬ ψ ¬ if- φ ¬ ψ
7 5 6 ax-mp if- φ ¬ ψ ¬ if- φ ¬ ψ
8 4 7 bitri ¬ if- φ ψ if- φ ¬ ψ
9 1 3 8 3bitri φ ψ if- φ ¬ ψ