Metamath Proof Explorer


Theorem ifpdfan

Description: Define and with conditional logic operator and false. (Contributed by RP, 20-Apr-2020)

Ref Expression
Assertion ifpdfan φ ψ if- φ ψ

Proof

Step Hyp Ref Expression
1 fal ¬
2 1 intnan ¬ ¬ φ
3 2 biorfi φ ψ φ ψ ¬ φ
4 df-ifp if- φ ψ φ ψ ¬ φ
5 3 4 bitr4i φ ψ if- φ ψ