Metamath Proof Explorer


Theorem ifpdfan

Description: Define and with conditional logic operator and false. (Contributed by RP, 20-Apr-2020)

Ref Expression
Assertion ifpdfan ( ( 𝜑𝜓 ) ↔ if- ( 𝜑 , 𝜓 , ⊥ ) )

Proof

Step Hyp Ref Expression
1 fal ¬ ⊥
2 1 intnan ¬ ( ¬ 𝜑 ∧ ⊥ )
3 2 biorfi ( ( 𝜑𝜓 ) ↔ ( ( 𝜑𝜓 ) ∨ ( ¬ 𝜑 ∧ ⊥ ) ) )
4 df-ifp ( if- ( 𝜑 , 𝜓 , ⊥ ) ↔ ( ( 𝜑𝜓 ) ∨ ( ¬ 𝜑 ∧ ⊥ ) ) )
5 3 4 bitr4i ( ( 𝜑𝜓 ) ↔ if- ( 𝜑 , 𝜓 , ⊥ ) )