Metamath Proof Explorer


Theorem ifpbi2

Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 14-Apr-2020)

Ref Expression
Assertion ifpbi2 ( ( 𝜑𝜓 ) → ( if- ( 𝜒 , 𝜑 , 𝜃 ) ↔ if- ( 𝜒 , 𝜓 , 𝜃 ) ) )

Proof

Step Hyp Ref Expression
1 imbi2 ( ( 𝜑𝜓 ) → ( ( 𝜒𝜑 ) ↔ ( 𝜒𝜓 ) ) )
2 1 anbi1d ( ( 𝜑𝜓 ) → ( ( ( 𝜒𝜑 ) ∧ ( ¬ 𝜒𝜃 ) ) ↔ ( ( 𝜒𝜓 ) ∧ ( ¬ 𝜒𝜃 ) ) ) )
3 dfifp2 ( if- ( 𝜒 , 𝜑 , 𝜃 ) ↔ ( ( 𝜒𝜑 ) ∧ ( ¬ 𝜒𝜃 ) ) )
4 dfifp2 ( if- ( 𝜒 , 𝜓 , 𝜃 ) ↔ ( ( 𝜒𝜓 ) ∧ ( ¬ 𝜒𝜃 ) ) )
5 2 3 4 3bitr4g ( ( 𝜑𝜓 ) → ( if- ( 𝜒 , 𝜑 , 𝜃 ) ↔ if- ( 𝜒 , 𝜓 , 𝜃 ) ) )