Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 14-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | ifpbi2 | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( if- ( 𝜒 , 𝜑 , 𝜃 ) ↔ if- ( 𝜒 , 𝜓 , 𝜃 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi2 | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( ( 𝜒 → 𝜑 ) ↔ ( 𝜒 → 𝜓 ) ) ) | |
2 | 1 | anbi1d | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( ( ( 𝜒 → 𝜑 ) ∧ ( ¬ 𝜒 → 𝜃 ) ) ↔ ( ( 𝜒 → 𝜓 ) ∧ ( ¬ 𝜒 → 𝜃 ) ) ) ) |
3 | dfifp2 | ⊢ ( if- ( 𝜒 , 𝜑 , 𝜃 ) ↔ ( ( 𝜒 → 𝜑 ) ∧ ( ¬ 𝜒 → 𝜃 ) ) ) | |
4 | dfifp2 | ⊢ ( if- ( 𝜒 , 𝜓 , 𝜃 ) ↔ ( ( 𝜒 → 𝜓 ) ∧ ( ¬ 𝜒 → 𝜃 ) ) ) | |
5 | 2 3 4 | 3bitr4g | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( if- ( 𝜒 , 𝜑 , 𝜃 ) ↔ if- ( 𝜒 , 𝜓 , 𝜃 ) ) ) |