Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 14-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ifpbi2 | |- ( ( ph <-> ps ) -> ( if- ( ch , ph , th ) <-> if- ( ch , ps , th ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbi2 | |- ( ( ph <-> ps ) -> ( ( ch -> ph ) <-> ( ch -> ps ) ) ) |
|
| 2 | 1 | anbi1d | |- ( ( ph <-> ps ) -> ( ( ( ch -> ph ) /\ ( -. ch -> th ) ) <-> ( ( ch -> ps ) /\ ( -. ch -> th ) ) ) ) |
| 3 | dfifp2 | |- ( if- ( ch , ph , th ) <-> ( ( ch -> ph ) /\ ( -. ch -> th ) ) ) |
|
| 4 | dfifp2 | |- ( if- ( ch , ps , th ) <-> ( ( ch -> ps ) /\ ( -. ch -> th ) ) ) |
|
| 5 | 2 3 4 | 3bitr4g | |- ( ( ph <-> ps ) -> ( if- ( ch , ph , th ) <-> if- ( ch , ps , th ) ) ) |