Metamath Proof Explorer


Theorem ifpbi2

Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 14-Apr-2020)

Ref Expression
Assertion ifpbi2
|- ( ( ph <-> ps ) -> ( if- ( ch , ph , th ) <-> if- ( ch , ps , th ) ) )

Proof

Step Hyp Ref Expression
1 imbi2
 |-  ( ( ph <-> ps ) -> ( ( ch -> ph ) <-> ( ch -> ps ) ) )
2 1 anbi1d
 |-  ( ( ph <-> ps ) -> ( ( ( ch -> ph ) /\ ( -. ch -> th ) ) <-> ( ( ch -> ps ) /\ ( -. ch -> th ) ) ) )
3 dfifp2
 |-  ( if- ( ch , ph , th ) <-> ( ( ch -> ph ) /\ ( -. ch -> th ) ) )
4 dfifp2
 |-  ( if- ( ch , ps , th ) <-> ( ( ch -> ps ) /\ ( -. ch -> th ) ) )
5 2 3 4 3bitr4g
 |-  ( ( ph <-> ps ) -> ( if- ( ch , ph , th ) <-> if- ( ch , ps , th ) ) )