| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xor2 |
⊢ ( ( 𝜑 ⊻ 𝜓 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∧ ¬ ( 𝜑 ∧ 𝜓 ) ) ) |
| 2 |
|
ifpdfor |
⊢ ( ( 𝜑 ∨ 𝜓 ) ↔ if- ( 𝜑 , ⊤ , 𝜓 ) ) |
| 3 |
|
ifpnot23 |
⊢ ( ¬ if- ( 𝜑 , 𝜓 , ⊥ ) ↔ if- ( 𝜑 , ¬ 𝜓 , ¬ ⊥ ) ) |
| 4 |
|
ifpdfan |
⊢ ( ( 𝜑 ∧ 𝜓 ) ↔ if- ( 𝜑 , 𝜓 , ⊥ ) ) |
| 5 |
3 4
|
xchnxbir |
⊢ ( ¬ ( 𝜑 ∧ 𝜓 ) ↔ if- ( 𝜑 , ¬ 𝜓 , ¬ ⊥ ) ) |
| 6 |
2 5
|
anbi12i |
⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∧ ¬ ( 𝜑 ∧ 𝜓 ) ) ↔ ( if- ( 𝜑 , ⊤ , 𝜓 ) ∧ if- ( 𝜑 , ¬ 𝜓 , ¬ ⊥ ) ) ) |
| 7 |
|
ifpan23 |
⊢ ( ( if- ( 𝜑 , ⊤ , 𝜓 ) ∧ if- ( 𝜑 , ¬ 𝜓 , ¬ ⊥ ) ) ↔ if- ( 𝜑 , ( ⊤ ∧ ¬ 𝜓 ) , ( 𝜓 ∧ ¬ ⊥ ) ) ) |
| 8 |
|
truan |
⊢ ( ( ⊤ ∧ ¬ 𝜓 ) ↔ ¬ 𝜓 ) |
| 9 |
|
fal |
⊢ ¬ ⊥ |
| 10 |
9
|
biantru |
⊢ ( 𝜓 ↔ ( 𝜓 ∧ ¬ ⊥ ) ) |
| 11 |
10
|
bicomi |
⊢ ( ( 𝜓 ∧ ¬ ⊥ ) ↔ 𝜓 ) |
| 12 |
|
ifpbi23 |
⊢ ( ( ( ( ⊤ ∧ ¬ 𝜓 ) ↔ ¬ 𝜓 ) ∧ ( ( 𝜓 ∧ ¬ ⊥ ) ↔ 𝜓 ) ) → ( if- ( 𝜑 , ( ⊤ ∧ ¬ 𝜓 ) , ( 𝜓 ∧ ¬ ⊥ ) ) ↔ if- ( 𝜑 , ¬ 𝜓 , 𝜓 ) ) ) |
| 13 |
8 11 12
|
mp2an |
⊢ ( if- ( 𝜑 , ( ⊤ ∧ ¬ 𝜓 ) , ( 𝜓 ∧ ¬ ⊥ ) ) ↔ if- ( 𝜑 , ¬ 𝜓 , 𝜓 ) ) |
| 14 |
7 13
|
bitri |
⊢ ( ( if- ( 𝜑 , ⊤ , 𝜓 ) ∧ if- ( 𝜑 , ¬ 𝜓 , ¬ ⊥ ) ) ↔ if- ( 𝜑 , ¬ 𝜓 , 𝜓 ) ) |
| 15 |
1 6 14
|
3bitri |
⊢ ( ( 𝜑 ⊻ 𝜓 ) ↔ if- ( 𝜑 , ¬ 𝜓 , 𝜓 ) ) |