Metamath Proof Explorer


Theorem ifpdfor

Description: Define or in terms of conditional logic operator and true. (Contributed by RP, 20-Apr-2020)

Ref Expression
Assertion ifpdfor ( ( 𝜑𝜓 ) ↔ if- ( 𝜑 , ⊤ , 𝜓 ) )

Proof

Step Hyp Ref Expression
1 tru
2 1 olci ( ¬ 𝜑 ∨ ⊤ )
3 2 biantrur ( ( 𝜑𝜓 ) ↔ ( ( ¬ 𝜑 ∨ ⊤ ) ∧ ( 𝜑𝜓 ) ) )
4 dfifp4 ( if- ( 𝜑 , ⊤ , 𝜓 ) ↔ ( ( ¬ 𝜑 ∨ ⊤ ) ∧ ( 𝜑𝜓 ) ) )
5 3 4 bitr4i ( ( 𝜑𝜓 ) ↔ if- ( 𝜑 , ⊤ , 𝜓 ) )