Step |
Hyp |
Ref |
Expression |
1 |
|
imbi12 |
⊢ ( ( 𝜑 ↔ 𝜓 ) → ( ( 𝜒 ↔ 𝜃 ) → ( ( 𝜑 → 𝜒 ) ↔ ( 𝜓 → 𝜃 ) ) ) ) |
2 |
1
|
imp |
⊢ ( ( ( 𝜑 ↔ 𝜓 ) ∧ ( 𝜒 ↔ 𝜃 ) ) → ( ( 𝜑 → 𝜒 ) ↔ ( 𝜓 → 𝜃 ) ) ) |
3 |
|
simpl |
⊢ ( ( ( 𝜑 ↔ 𝜓 ) ∧ ( 𝜒 ↔ 𝜃 ) ) → ( 𝜑 ↔ 𝜓 ) ) |
4 |
3
|
notbid |
⊢ ( ( ( 𝜑 ↔ 𝜓 ) ∧ ( 𝜒 ↔ 𝜃 ) ) → ( ¬ 𝜑 ↔ ¬ 𝜓 ) ) |
5 |
4
|
imbi1d |
⊢ ( ( ( 𝜑 ↔ 𝜓 ) ∧ ( 𝜒 ↔ 𝜃 ) ) → ( ( ¬ 𝜑 → 𝜏 ) ↔ ( ¬ 𝜓 → 𝜏 ) ) ) |
6 |
2 5
|
anbi12d |
⊢ ( ( ( 𝜑 ↔ 𝜓 ) ∧ ( 𝜒 ↔ 𝜃 ) ) → ( ( ( 𝜑 → 𝜒 ) ∧ ( ¬ 𝜑 → 𝜏 ) ) ↔ ( ( 𝜓 → 𝜃 ) ∧ ( ¬ 𝜓 → 𝜏 ) ) ) ) |
7 |
|
dfifp2 |
⊢ ( if- ( 𝜑 , 𝜒 , 𝜏 ) ↔ ( ( 𝜑 → 𝜒 ) ∧ ( ¬ 𝜑 → 𝜏 ) ) ) |
8 |
|
dfifp2 |
⊢ ( if- ( 𝜓 , 𝜃 , 𝜏 ) ↔ ( ( 𝜓 → 𝜃 ) ∧ ( ¬ 𝜓 → 𝜏 ) ) ) |
9 |
6 7 8
|
3bitr4g |
⊢ ( ( ( 𝜑 ↔ 𝜓 ) ∧ ( 𝜒 ↔ 𝜃 ) ) → ( if- ( 𝜑 , 𝜒 , 𝜏 ) ↔ if- ( 𝜓 , 𝜃 , 𝜏 ) ) ) |