Metamath Proof Explorer


Theorem ifpbi12

Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 15-Apr-2020)

Ref Expression
Assertion ifpbi12 ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) → ( if- ( 𝜑 , 𝜒 , 𝜏 ) ↔ if- ( 𝜓 , 𝜃 , 𝜏 ) ) )

Proof

Step Hyp Ref Expression
1 imbi12 ( ( 𝜑𝜓 ) → ( ( 𝜒𝜃 ) → ( ( 𝜑𝜒 ) ↔ ( 𝜓𝜃 ) ) ) )
2 1 imp ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) → ( ( 𝜑𝜒 ) ↔ ( 𝜓𝜃 ) ) )
3 simpl ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) → ( 𝜑𝜓 ) )
4 3 notbid ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) → ( ¬ 𝜑 ↔ ¬ 𝜓 ) )
5 4 imbi1d ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) → ( ( ¬ 𝜑𝜏 ) ↔ ( ¬ 𝜓𝜏 ) ) )
6 2 5 anbi12d ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) → ( ( ( 𝜑𝜒 ) ∧ ( ¬ 𝜑𝜏 ) ) ↔ ( ( 𝜓𝜃 ) ∧ ( ¬ 𝜓𝜏 ) ) ) )
7 dfifp2 ( if- ( 𝜑 , 𝜒 , 𝜏 ) ↔ ( ( 𝜑𝜒 ) ∧ ( ¬ 𝜑𝜏 ) ) )
8 dfifp2 ( if- ( 𝜓 , 𝜃 , 𝜏 ) ↔ ( ( 𝜓𝜃 ) ∧ ( ¬ 𝜓𝜏 ) ) )
9 6 7 8 3bitr4g ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) → ( if- ( 𝜑 , 𝜒 , 𝜏 ) ↔ if- ( 𝜓 , 𝜃 , 𝜏 ) ) )