Metamath Proof Explorer


Theorem ifpbi12

Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 15-Apr-2020)

Ref Expression
Assertion ifpbi12 φ ψ χ θ if- φ χ τ if- ψ θ τ

Proof

Step Hyp Ref Expression
1 imbi12 φ ψ χ θ φ χ ψ θ
2 1 imp φ ψ χ θ φ χ ψ θ
3 simpl φ ψ χ θ φ ψ
4 3 notbid φ ψ χ θ ¬ φ ¬ ψ
5 4 imbi1d φ ψ χ θ ¬ φ τ ¬ ψ τ
6 2 5 anbi12d φ ψ χ θ φ χ ¬ φ τ ψ θ ¬ ψ τ
7 dfifp2 if- φ χ τ φ χ ¬ φ τ
8 dfifp2 if- ψ θ τ ψ θ ¬ ψ τ
9 6 7 8 3bitr4g φ ψ χ θ if- φ χ τ if- ψ θ τ