Metamath Proof Explorer


Theorem ifpbi12

Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 15-Apr-2020)

Ref Expression
Assertion ifpbi12
|- ( ( ( ph <-> ps ) /\ ( ch <-> th ) ) -> ( if- ( ph , ch , ta ) <-> if- ( ps , th , ta ) ) )

Proof

Step Hyp Ref Expression
1 imbi12
 |-  ( ( ph <-> ps ) -> ( ( ch <-> th ) -> ( ( ph -> ch ) <-> ( ps -> th ) ) ) )
2 1 imp
 |-  ( ( ( ph <-> ps ) /\ ( ch <-> th ) ) -> ( ( ph -> ch ) <-> ( ps -> th ) ) )
3 simpl
 |-  ( ( ( ph <-> ps ) /\ ( ch <-> th ) ) -> ( ph <-> ps ) )
4 3 notbid
 |-  ( ( ( ph <-> ps ) /\ ( ch <-> th ) ) -> ( -. ph <-> -. ps ) )
5 4 imbi1d
 |-  ( ( ( ph <-> ps ) /\ ( ch <-> th ) ) -> ( ( -. ph -> ta ) <-> ( -. ps -> ta ) ) )
6 2 5 anbi12d
 |-  ( ( ( ph <-> ps ) /\ ( ch <-> th ) ) -> ( ( ( ph -> ch ) /\ ( -. ph -> ta ) ) <-> ( ( ps -> th ) /\ ( -. ps -> ta ) ) ) )
7 dfifp2
 |-  ( if- ( ph , ch , ta ) <-> ( ( ph -> ch ) /\ ( -. ph -> ta ) ) )
8 dfifp2
 |-  ( if- ( ps , th , ta ) <-> ( ( ps -> th ) /\ ( -. ps -> ta ) ) )
9 6 7 8 3bitr4g
 |-  ( ( ( ph <-> ps ) /\ ( ch <-> th ) ) -> ( if- ( ph , ch , ta ) <-> if- ( ps , th , ta ) ) )