Step |
Hyp |
Ref |
Expression |
1 |
|
imbi12 |
|- ( ( ph <-> ps ) -> ( ( ch <-> th ) -> ( ( ph -> ch ) <-> ( ps -> th ) ) ) ) |
2 |
1
|
imp |
|- ( ( ( ph <-> ps ) /\ ( ch <-> th ) ) -> ( ( ph -> ch ) <-> ( ps -> th ) ) ) |
3 |
|
simpl |
|- ( ( ( ph <-> ps ) /\ ( ch <-> th ) ) -> ( ph <-> ps ) ) |
4 |
3
|
notbid |
|- ( ( ( ph <-> ps ) /\ ( ch <-> th ) ) -> ( -. ph <-> -. ps ) ) |
5 |
4
|
imbi1d |
|- ( ( ( ph <-> ps ) /\ ( ch <-> th ) ) -> ( ( -. ph -> ta ) <-> ( -. ps -> ta ) ) ) |
6 |
2 5
|
anbi12d |
|- ( ( ( ph <-> ps ) /\ ( ch <-> th ) ) -> ( ( ( ph -> ch ) /\ ( -. ph -> ta ) ) <-> ( ( ps -> th ) /\ ( -. ps -> ta ) ) ) ) |
7 |
|
dfifp2 |
|- ( if- ( ph , ch , ta ) <-> ( ( ph -> ch ) /\ ( -. ph -> ta ) ) ) |
8 |
|
dfifp2 |
|- ( if- ( ps , th , ta ) <-> ( ( ps -> th ) /\ ( -. ps -> ta ) ) ) |
9 |
6 7 8
|
3bitr4g |
|- ( ( ( ph <-> ps ) /\ ( ch <-> th ) ) -> ( if- ( ph , ch , ta ) <-> if- ( ps , th , ta ) ) ) |