| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|- ( ( ( ph <-> ps ) /\ ( ch <-> th ) ) -> ( ph <-> ps ) ) |
| 2 |
1
|
imbi1d |
|- ( ( ( ph <-> ps ) /\ ( ch <-> th ) ) -> ( ( ph -> ta ) <-> ( ps -> ta ) ) ) |
| 3 |
|
notbi |
|- ( ( ph <-> ps ) <-> ( -. ph <-> -. ps ) ) |
| 4 |
|
imbi12 |
|- ( ( -. ph <-> -. ps ) -> ( ( ch <-> th ) -> ( ( -. ph -> ch ) <-> ( -. ps -> th ) ) ) ) |
| 5 |
3 4
|
sylbi |
|- ( ( ph <-> ps ) -> ( ( ch <-> th ) -> ( ( -. ph -> ch ) <-> ( -. ps -> th ) ) ) ) |
| 6 |
5
|
imp |
|- ( ( ( ph <-> ps ) /\ ( ch <-> th ) ) -> ( ( -. ph -> ch ) <-> ( -. ps -> th ) ) ) |
| 7 |
2 6
|
anbi12d |
|- ( ( ( ph <-> ps ) /\ ( ch <-> th ) ) -> ( ( ( ph -> ta ) /\ ( -. ph -> ch ) ) <-> ( ( ps -> ta ) /\ ( -. ps -> th ) ) ) ) |
| 8 |
|
dfifp2 |
|- ( if- ( ph , ta , ch ) <-> ( ( ph -> ta ) /\ ( -. ph -> ch ) ) ) |
| 9 |
|
dfifp2 |
|- ( if- ( ps , ta , th ) <-> ( ( ps -> ta ) /\ ( -. ps -> th ) ) ) |
| 10 |
7 8 9
|
3bitr4g |
|- ( ( ( ph <-> ps ) /\ ( ch <-> th ) ) -> ( if- ( ph , ta , ch ) <-> if- ( ps , ta , th ) ) ) |