Metamath Proof Explorer


Theorem ifpbi123

Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 15-Apr-2020)

Ref Expression
Assertion ifpbi123
|- ( ( ( ph <-> ps ) /\ ( ch <-> th ) /\ ( ta <-> et ) ) -> ( if- ( ph , ch , ta ) <-> if- ( ps , th , et ) ) )

Proof

Step Hyp Ref Expression
1 simp1
 |-  ( ( ( ph <-> ps ) /\ ( ch <-> th ) /\ ( ta <-> et ) ) -> ( ph <-> ps ) )
2 simp2
 |-  ( ( ( ph <-> ps ) /\ ( ch <-> th ) /\ ( ta <-> et ) ) -> ( ch <-> th ) )
3 simp3
 |-  ( ( ( ph <-> ps ) /\ ( ch <-> th ) /\ ( ta <-> et ) ) -> ( ta <-> et ) )
4 1 2 3 ifpbi123d
 |-  ( ( ( ph <-> ps ) /\ ( ch <-> th ) /\ ( ta <-> et ) ) -> ( if- ( ph , ch , ta ) <-> if- ( ps , th , et ) ) )