Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 15-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ifpbi123 | |- ( ( ( ph <-> ps ) /\ ( ch <-> th ) /\ ( ta <-> et ) ) -> ( if- ( ph , ch , ta ) <-> if- ( ps , th , et ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( ( ph <-> ps ) /\ ( ch <-> th ) /\ ( ta <-> et ) ) -> ( ph <-> ps ) ) |
|
| 2 | simp2 | |- ( ( ( ph <-> ps ) /\ ( ch <-> th ) /\ ( ta <-> et ) ) -> ( ch <-> th ) ) |
|
| 3 | simp3 | |- ( ( ( ph <-> ps ) /\ ( ch <-> th ) /\ ( ta <-> et ) ) -> ( ta <-> et ) ) |
|
| 4 | 1 2 3 | ifpbi123d | |- ( ( ( ph <-> ps ) /\ ( ch <-> th ) /\ ( ta <-> et ) ) -> ( if- ( ph , ch , ta ) <-> if- ( ps , th , et ) ) ) |