Metamath Proof Explorer


Theorem ifpbi123

Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 15-Apr-2020)

Ref Expression
Assertion ifpbi123 ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ∧ ( 𝜏𝜂 ) ) → ( if- ( 𝜑 , 𝜒 , 𝜏 ) ↔ if- ( 𝜓 , 𝜃 , 𝜂 ) ) )

Proof

Step Hyp Ref Expression
1 simp1 ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ∧ ( 𝜏𝜂 ) ) → ( 𝜑𝜓 ) )
2 simp2 ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ∧ ( 𝜏𝜂 ) ) → ( 𝜒𝜃 ) )
3 simp3 ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ∧ ( 𝜏𝜂 ) ) → ( 𝜏𝜂 ) )
4 1 2 3 ifpbi123d ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ∧ ( 𝜏𝜂 ) ) → ( if- ( 𝜑 , 𝜒 , 𝜏 ) ↔ if- ( 𝜓 , 𝜃 , 𝜂 ) ) )