Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 15-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | ifpbi123 | ⊢ ( ( ( 𝜑 ↔ 𝜓 ) ∧ ( 𝜒 ↔ 𝜃 ) ∧ ( 𝜏 ↔ 𝜂 ) ) → ( if- ( 𝜑 , 𝜒 , 𝜏 ) ↔ if- ( 𝜓 , 𝜃 , 𝜂 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 | ⊢ ( ( ( 𝜑 ↔ 𝜓 ) ∧ ( 𝜒 ↔ 𝜃 ) ∧ ( 𝜏 ↔ 𝜂 ) ) → ( 𝜑 ↔ 𝜓 ) ) | |
2 | simp2 | ⊢ ( ( ( 𝜑 ↔ 𝜓 ) ∧ ( 𝜒 ↔ 𝜃 ) ∧ ( 𝜏 ↔ 𝜂 ) ) → ( 𝜒 ↔ 𝜃 ) ) | |
3 | simp3 | ⊢ ( ( ( 𝜑 ↔ 𝜓 ) ∧ ( 𝜒 ↔ 𝜃 ) ∧ ( 𝜏 ↔ 𝜂 ) ) → ( 𝜏 ↔ 𝜂 ) ) | |
4 | 1 2 3 | ifpbi123d | ⊢ ( ( ( 𝜑 ↔ 𝜓 ) ∧ ( 𝜒 ↔ 𝜃 ) ∧ ( 𝜏 ↔ 𝜂 ) ) → ( if- ( 𝜑 , 𝜒 , 𝜏 ) ↔ if- ( 𝜓 , 𝜃 , 𝜂 ) ) ) |