Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Short Studies
Additional work on conditional logical operator
ifpbi123
Next ⟩
ifpidg
Metamath Proof Explorer
Ascii
Unicode
Theorem
ifpbi123
Description:
Equivalence theorem for conditional logical operators.
(Contributed by
RP
, 15-Apr-2020)
Ref
Expression
Assertion
ifpbi123
⊢
φ
↔
ψ
∧
χ
↔
θ
∧
τ
↔
η
→
if-
φ
χ
τ
↔
if-
ψ
θ
η
Proof
Step
Hyp
Ref
Expression
1
simp1
⊢
φ
↔
ψ
∧
χ
↔
θ
∧
τ
↔
η
→
φ
↔
ψ
2
simp2
⊢
φ
↔
ψ
∧
χ
↔
θ
∧
τ
↔
η
→
χ
↔
θ
3
simp3
⊢
φ
↔
ψ
∧
χ
↔
θ
∧
τ
↔
η
→
τ
↔
η
4
1
2
3
ifpbi123d
⊢
φ
↔
ψ
∧
χ
↔
θ
∧
τ
↔
η
→
if-
φ
χ
τ
↔
if-
ψ
θ
η