Metamath Proof Explorer


Theorem ifpbi123

Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 15-Apr-2020)

Ref Expression
Assertion ifpbi123 φψχθτηif-φχτif-ψθη

Proof

Step Hyp Ref Expression
1 simp1 φψχθτηφψ
2 simp2 φψχθτηχθ
3 simp3 φψχθτητη
4 1 2 3 ifpbi123d φψχθτηif-φχτif-ψθη