Description: Restate implication as conditional logic operator. (Contributed by RP, 25-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ifpim4 | ⊢ ( ( 𝜑 → 𝜓 ) ↔ if- ( 𝜓 , 𝜓 , ¬ 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜓 ) | |
| 2 | olc | ⊢ ( 𝜓 → ( 𝜑 ∨ 𝜓 ) ) | |
| 3 | ifpim23g | ⊢ ( ( ( 𝜑 → 𝜓 ) ↔ if- ( 𝜓 , 𝜓 , ¬ 𝜑 ) ) ↔ ( ( ( 𝜑 ∧ 𝜓 ) → 𝜓 ) ∧ ( 𝜓 → ( 𝜑 ∨ 𝜓 ) ) ) ) | |
| 4 | 1 2 3 | mpbir2an | ⊢ ( ( 𝜑 → 𝜓 ) ↔ if- ( 𝜓 , 𝜓 , ¬ 𝜑 ) ) |