Description: Restate implication as conditional logic operator. (Contributed by RP, 25-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | ifpim4 | ⊢ ( ( 𝜑 → 𝜓 ) ↔ if- ( 𝜓 , 𝜓 , ¬ 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜓 ) | |
2 | olc | ⊢ ( 𝜓 → ( 𝜑 ∨ 𝜓 ) ) | |
3 | ifpim23g | ⊢ ( ( ( 𝜑 → 𝜓 ) ↔ if- ( 𝜓 , 𝜓 , ¬ 𝜑 ) ) ↔ ( ( ( 𝜑 ∧ 𝜓 ) → 𝜓 ) ∧ ( 𝜓 → ( 𝜑 ∨ 𝜓 ) ) ) ) | |
4 | 1 2 3 | mpbir2an | ⊢ ( ( 𝜑 → 𝜓 ) ↔ if- ( 𝜓 , 𝜓 , ¬ 𝜑 ) ) |