Metamath Proof Explorer


Theorem ifpim4

Description: Restate implication as conditional logic operator. (Contributed by RP, 25-Apr-2020)

Ref Expression
Assertion ifpim4 ( ( 𝜑𝜓 ) ↔ if- ( 𝜓 , 𝜓 , ¬ 𝜑 ) )

Proof

Step Hyp Ref Expression
1 simpr ( ( 𝜑𝜓 ) → 𝜓 )
2 olc ( 𝜓 → ( 𝜑𝜓 ) )
3 ifpim23g ( ( ( 𝜑𝜓 ) ↔ if- ( 𝜓 , 𝜓 , ¬ 𝜑 ) ) ↔ ( ( ( 𝜑𝜓 ) → 𝜓 ) ∧ ( 𝜓 → ( 𝜑𝜓 ) ) ) )
4 1 2 3 mpbir2an ( ( 𝜑𝜓 ) ↔ if- ( 𝜓 , 𝜓 , ¬ 𝜑 ) )