Metamath Proof Explorer


Theorem ifpnim2

Description: Restate negated implication as conditional logic operator. (Contributed by RP, 25-Apr-2020)

Ref Expression
Assertion ifpnim2 ( ¬ ( 𝜑𝜓 ) ↔ if- ( 𝜓 , ¬ 𝜓 , 𝜑 ) )

Proof

Step Hyp Ref Expression
1 ifpnot23c ( ¬ if- ( 𝜓 , 𝜓 , ¬ 𝜑 ) ↔ if- ( 𝜓 , ¬ 𝜓 , 𝜑 ) )
2 ifpim4 ( ( 𝜑𝜓 ) ↔ if- ( 𝜓 , 𝜓 , ¬ 𝜑 ) )
3 1 2 xchnxbir ( ¬ ( 𝜑𝜓 ) ↔ if- ( 𝜓 , ¬ 𝜓 , 𝜑 ) )