Description: Restate negated implication as conditional logic operator. (Contributed by RP, 25-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | ifpnim2 | ⊢ ( ¬ ( 𝜑 → 𝜓 ) ↔ if- ( 𝜓 , ¬ 𝜓 , 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifpnot23c | ⊢ ( ¬ if- ( 𝜓 , 𝜓 , ¬ 𝜑 ) ↔ if- ( 𝜓 , ¬ 𝜓 , 𝜑 ) ) | |
2 | ifpim4 | ⊢ ( ( 𝜑 → 𝜓 ) ↔ if- ( 𝜓 , 𝜓 , ¬ 𝜑 ) ) | |
3 | 1 2 | xchnxbir | ⊢ ( ¬ ( 𝜑 → 𝜓 ) ↔ if- ( 𝜓 , ¬ 𝜓 , 𝜑 ) ) |