Metamath Proof Explorer


Theorem ifpnim2

Description: Restate negated implication as conditional logic operator. (Contributed by RP, 25-Apr-2020)

Ref Expression
Assertion ifpnim2 ¬ φ ψ if- ψ ¬ ψ φ

Proof

Step Hyp Ref Expression
1 ifpnot23c ¬ if- ψ ψ ¬ φ if- ψ ¬ ψ φ
2 ifpim4 φ ψ if- ψ ψ ¬ φ
3 1 2 xchnxbir ¬ φ ψ if- ψ ¬ ψ φ