Metamath Proof Explorer


Theorem ifpid1g

Description: Restate wff as conditional logic operator. (Contributed by RP, 20-Apr-2020)

Ref Expression
Assertion ifpid1g φif-φψχχφφψ

Proof

Step Hyp Ref Expression
1 ifpidg φif-φψχφψφφφψχφφφφχ
2 ancom φψφφφψχφφφφχχφφφφχφψφφφψ
3 pm4.25 φφφ
4 3 imbi2i χφχφφ
5 orc φφχ
6 5 biantru χφφχφφφφχ
7 4 6 bitr2i χφφφφχχφ
8 pm4.24 φφφ
9 8 imbi1i φψφφψ
10 simpl φψφ
11 10 biantrur φφψφψφφφψ
12 9 11 bitr2i φψφφφψφψ
13 7 12 anbi12i χφφφφχφψφφφψχφφψ
14 1 2 13 3bitri φif-φψχχφφψ