Description: A triple importation inference. (Contributed by Jeff Hankins, 8-Jul-2009)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 3imp5.1 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜃 → ( 𝜏 → 𝜂 ) ) ) ) ) | |
Assertion | imp5p | ⊢ ( 𝜑 → ( 𝜓 → ( ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) → 𝜂 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imp5.1 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜃 → ( 𝜏 → 𝜂 ) ) ) ) ) | |
2 | 1 | com52l | ⊢ ( 𝜒 → ( 𝜃 → ( 𝜏 → ( 𝜑 → ( 𝜓 → 𝜂 ) ) ) ) ) |
3 | 2 | 3imp | ⊢ ( ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) → ( 𝜑 → ( 𝜓 → 𝜂 ) ) ) |
4 | 3 | com3l | ⊢ ( 𝜑 → ( 𝜓 → ( ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) → 𝜂 ) ) ) |