Description: A triple importation inference. (Contributed by Jeff Hankins, 8-Jul-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 3imp5.1 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜃 → ( 𝜏 → 𝜂 ) ) ) ) ) | |
| Assertion | imp5p | ⊢ ( 𝜑 → ( 𝜓 → ( ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) → 𝜂 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3imp5.1 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜃 → ( 𝜏 → 𝜂 ) ) ) ) ) | |
| 2 | 1 | com52l | ⊢ ( 𝜒 → ( 𝜃 → ( 𝜏 → ( 𝜑 → ( 𝜓 → 𝜂 ) ) ) ) ) | 
| 3 | 2 | 3imp | ⊢ ( ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) → ( 𝜑 → ( 𝜓 → 𝜂 ) ) ) | 
| 4 | 3 | com3l | ⊢ ( 𝜑 → ( 𝜓 → ( ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) → 𝜂 ) ) ) |