Metamath Proof Explorer


Theorem imp5p

Description: A triple importation inference. (Contributed by Jeff Hankins, 8-Jul-2009)

Ref Expression
Hypothesis 3imp5.1
|- ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) )
Assertion imp5p
|- ( ph -> ( ps -> ( ( ch /\ th /\ ta ) -> et ) ) )

Proof

Step Hyp Ref Expression
1 3imp5.1
 |-  ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) )
2 1 com52l
 |-  ( ch -> ( th -> ( ta -> ( ph -> ( ps -> et ) ) ) ) )
3 2 3imp
 |-  ( ( ch /\ th /\ ta ) -> ( ph -> ( ps -> et ) ) )
4 3 com3l
 |-  ( ph -> ( ps -> ( ( ch /\ th /\ ta ) -> et ) ) )