Description: A triple importation inference. (Contributed by Jeff Hankins, 8-Jul-2009)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 3imp5.1 | |- ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) ) |
|
Assertion | imp5p | |- ( ph -> ( ps -> ( ( ch /\ th /\ ta ) -> et ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imp5.1 | |- ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) ) |
|
2 | 1 | com52l | |- ( ch -> ( th -> ( ta -> ( ph -> ( ps -> et ) ) ) ) ) |
3 | 2 | 3imp | |- ( ( ch /\ th /\ ta ) -> ( ph -> ( ps -> et ) ) ) |
4 | 3 | com3l | |- ( ph -> ( ps -> ( ( ch /\ th /\ ta ) -> et ) ) ) |