Description: A triple importation inference. (Contributed by Jeff Hankins, 8-Jul-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 3imp5.1 | |- ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) ) | |
| Assertion | imp5q | |- ( ( ph /\ ps ) -> ( ( ch /\ th /\ ta ) -> et ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3imp5.1 | |- ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) ) | |
| 2 | 1 | imp | |- ( ( ph /\ ps ) -> ( ch -> ( th -> ( ta -> et ) ) ) ) | 
| 3 | 2 | 3impd | |- ( ( ph /\ ps ) -> ( ( ch /\ th /\ ta ) -> et ) ) |