Metamath Proof Explorer


Theorem imp5q

Description: A triple importation inference. (Contributed by Jeff Hankins, 8-Jul-2009)

Ref Expression
Hypothesis 3imp5.1
|- ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) )
Assertion imp5q
|- ( ( ph /\ ps ) -> ( ( ch /\ th /\ ta ) -> et ) )

Proof

Step Hyp Ref Expression
1 3imp5.1
 |-  ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) )
2 1 imp
 |-  ( ( ph /\ ps ) -> ( ch -> ( th -> ( ta -> et ) ) ) )
3 2 3impd
 |-  ( ( ph /\ ps ) -> ( ( ch /\ th /\ ta ) -> et ) )