Metamath Proof Explorer


Theorem ecase13d

Description: Deduction for elimination by cases. (Contributed by Jeff Hankins, 18-Aug-2009)

Ref Expression
Hypotheses ecase13d.1
|- ( ph -> -. ch )
ecase13d.2
|- ( ph -> -. th )
ecase13d.3
|- ( ph -> ( ch \/ ps \/ th ) )
Assertion ecase13d
|- ( ph -> ps )

Proof

Step Hyp Ref Expression
1 ecase13d.1
 |-  ( ph -> -. ch )
2 ecase13d.2
 |-  ( ph -> -. th )
3 ecase13d.3
 |-  ( ph -> ( ch \/ ps \/ th ) )
4 3orass
 |-  ( ( ch \/ ps \/ th ) <-> ( ch \/ ( ps \/ th ) ) )
5 df-or
 |-  ( ( ch \/ ( ps \/ th ) ) <-> ( -. ch -> ( ps \/ th ) ) )
6 4 5 bitri
 |-  ( ( ch \/ ps \/ th ) <-> ( -. ch -> ( ps \/ th ) ) )
7 3 6 sylib
 |-  ( ph -> ( -. ch -> ( ps \/ th ) ) )
8 1 7 mpd
 |-  ( ph -> ( ps \/ th ) )
9 orcom
 |-  ( ( ps \/ th ) <-> ( th \/ ps ) )
10 df-or
 |-  ( ( th \/ ps ) <-> ( -. th -> ps ) )
11 9 10 bitri
 |-  ( ( ps \/ th ) <-> ( -. th -> ps ) )
12 8 11 sylib
 |-  ( ph -> ( -. th -> ps ) )
13 2 12 mpd
 |-  ( ph -> ps )