Step |
Hyp |
Ref |
Expression |
1 |
|
ecase13d.1 |
|- ( ph -> -. ch ) |
2 |
|
ecase13d.2 |
|- ( ph -> -. th ) |
3 |
|
ecase13d.3 |
|- ( ph -> ( ch \/ ps \/ th ) ) |
4 |
|
3orass |
|- ( ( ch \/ ps \/ th ) <-> ( ch \/ ( ps \/ th ) ) ) |
5 |
|
df-or |
|- ( ( ch \/ ( ps \/ th ) ) <-> ( -. ch -> ( ps \/ th ) ) ) |
6 |
4 5
|
bitri |
|- ( ( ch \/ ps \/ th ) <-> ( -. ch -> ( ps \/ th ) ) ) |
7 |
3 6
|
sylib |
|- ( ph -> ( -. ch -> ( ps \/ th ) ) ) |
8 |
1 7
|
mpd |
|- ( ph -> ( ps \/ th ) ) |
9 |
|
orcom |
|- ( ( ps \/ th ) <-> ( th \/ ps ) ) |
10 |
|
df-or |
|- ( ( th \/ ps ) <-> ( -. th -> ps ) ) |
11 |
9 10
|
bitri |
|- ( ( ps \/ th ) <-> ( -. th -> ps ) ) |
12 |
8 11
|
sylib |
|- ( ph -> ( -. th -> ps ) ) |
13 |
2 12
|
mpd |
|- ( ph -> ps ) |