| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ecase13d.1 |  |-  ( ph -> -. ch ) | 
						
							| 2 |  | ecase13d.2 |  |-  ( ph -> -. th ) | 
						
							| 3 |  | ecase13d.3 |  |-  ( ph -> ( ch \/ ps \/ th ) ) | 
						
							| 4 |  | 3orass |  |-  ( ( ch \/ ps \/ th ) <-> ( ch \/ ( ps \/ th ) ) ) | 
						
							| 5 |  | df-or |  |-  ( ( ch \/ ( ps \/ th ) ) <-> ( -. ch -> ( ps \/ th ) ) ) | 
						
							| 6 | 4 5 | bitri |  |-  ( ( ch \/ ps \/ th ) <-> ( -. ch -> ( ps \/ th ) ) ) | 
						
							| 7 | 3 6 | sylib |  |-  ( ph -> ( -. ch -> ( ps \/ th ) ) ) | 
						
							| 8 | 1 7 | mpd |  |-  ( ph -> ( ps \/ th ) ) | 
						
							| 9 |  | orcom |  |-  ( ( ps \/ th ) <-> ( th \/ ps ) ) | 
						
							| 10 |  | df-or |  |-  ( ( th \/ ps ) <-> ( -. th -> ps ) ) | 
						
							| 11 | 9 10 | bitri |  |-  ( ( ps \/ th ) <-> ( -. th -> ps ) ) | 
						
							| 12 | 8 11 | sylib |  |-  ( ph -> ( -. th -> ps ) ) | 
						
							| 13 | 2 12 | mpd |  |-  ( ph -> ps ) |