| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ecase13d.1 |
|- ( ph -> -. ch ) |
| 2 |
|
ecase13d.2 |
|- ( ph -> -. th ) |
| 3 |
|
ecase13d.3 |
|- ( ph -> ( ch \/ ps \/ th ) ) |
| 4 |
|
3orass |
|- ( ( ch \/ ps \/ th ) <-> ( ch \/ ( ps \/ th ) ) ) |
| 5 |
|
df-or |
|- ( ( ch \/ ( ps \/ th ) ) <-> ( -. ch -> ( ps \/ th ) ) ) |
| 6 |
4 5
|
bitri |
|- ( ( ch \/ ps \/ th ) <-> ( -. ch -> ( ps \/ th ) ) ) |
| 7 |
3 6
|
sylib |
|- ( ph -> ( -. ch -> ( ps \/ th ) ) ) |
| 8 |
1 7
|
mpd |
|- ( ph -> ( ps \/ th ) ) |
| 9 |
|
orcom |
|- ( ( ps \/ th ) <-> ( th \/ ps ) ) |
| 10 |
|
df-or |
|- ( ( th \/ ps ) <-> ( -. th -> ps ) ) |
| 11 |
9 10
|
bitri |
|- ( ( ps \/ th ) <-> ( -. th -> ps ) ) |
| 12 |
8 11
|
sylib |
|- ( ph -> ( -. th -> ps ) ) |
| 13 |
2 12
|
mpd |
|- ( ph -> ps ) |