| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subtr.1 |
|- F/_ x A |
| 2 |
|
subtr.2 |
|- F/_ x B |
| 3 |
|
subtr.3 |
|- F/_ x Y |
| 4 |
|
subtr.4 |
|- F/_ x Z |
| 5 |
|
subtr.5 |
|- ( x = A -> X = Y ) |
| 6 |
|
subtr.6 |
|- ( x = B -> X = Z ) |
| 7 |
1 2
|
nfeq |
|- F/ x A = B |
| 8 |
3 4
|
nfeq |
|- F/ x Y = Z |
| 9 |
7 8
|
nfim |
|- F/ x ( A = B -> Y = Z ) |
| 10 |
|
eqeq1 |
|- ( x = A -> ( x = B <-> A = B ) ) |
| 11 |
5
|
eqeq1d |
|- ( x = A -> ( X = Z <-> Y = Z ) ) |
| 12 |
10 11
|
imbi12d |
|- ( x = A -> ( ( x = B -> X = Z ) <-> ( A = B -> Y = Z ) ) ) |
| 13 |
1 9 12 6
|
vtoclgf |
|- ( A e. C -> ( A = B -> Y = Z ) ) |
| 14 |
13
|
adantr |
|- ( ( A e. C /\ B e. D ) -> ( A = B -> Y = Z ) ) |