Metamath Proof Explorer


Theorem subtr

Description: Transitivity of implicit substitution. (Contributed by Jeff Hankins, 13-Sep-2009) (Proof shortened by Mario Carneiro, 11-Dec-2016)

Ref Expression
Hypotheses subtr.1
|- F/_ x A
subtr.2
|- F/_ x B
subtr.3
|- F/_ x Y
subtr.4
|- F/_ x Z
subtr.5
|- ( x = A -> X = Y )
subtr.6
|- ( x = B -> X = Z )
Assertion subtr
|- ( ( A e. C /\ B e. D ) -> ( A = B -> Y = Z ) )

Proof

Step Hyp Ref Expression
1 subtr.1
 |-  F/_ x A
2 subtr.2
 |-  F/_ x B
3 subtr.3
 |-  F/_ x Y
4 subtr.4
 |-  F/_ x Z
5 subtr.5
 |-  ( x = A -> X = Y )
6 subtr.6
 |-  ( x = B -> X = Z )
7 1 2 nfeq
 |-  F/ x A = B
8 3 4 nfeq
 |-  F/ x Y = Z
9 7 8 nfim
 |-  F/ x ( A = B -> Y = Z )
10 eqeq1
 |-  ( x = A -> ( x = B <-> A = B ) )
11 5 eqeq1d
 |-  ( x = A -> ( X = Z <-> Y = Z ) )
12 10 11 imbi12d
 |-  ( x = A -> ( ( x = B -> X = Z ) <-> ( A = B -> Y = Z ) ) )
13 1 9 12 6 vtoclgf
 |-  ( A e. C -> ( A = B -> Y = Z ) )
14 13 adantr
 |-  ( ( A e. C /\ B e. D ) -> ( A = B -> Y = Z ) )