| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subtr.1 |  |-  F/_ x A | 
						
							| 2 |  | subtr.2 |  |-  F/_ x B | 
						
							| 3 |  | subtr.3 |  |-  F/_ x Y | 
						
							| 4 |  | subtr.4 |  |-  F/_ x Z | 
						
							| 5 |  | subtr.5 |  |-  ( x = A -> X = Y ) | 
						
							| 6 |  | subtr.6 |  |-  ( x = B -> X = Z ) | 
						
							| 7 | 1 2 | nfeq |  |-  F/ x A = B | 
						
							| 8 | 3 4 | nfeq |  |-  F/ x Y = Z | 
						
							| 9 | 7 8 | nfim |  |-  F/ x ( A = B -> Y = Z ) | 
						
							| 10 |  | eqeq1 |  |-  ( x = A -> ( x = B <-> A = B ) ) | 
						
							| 11 | 5 | eqeq1d |  |-  ( x = A -> ( X = Z <-> Y = Z ) ) | 
						
							| 12 | 10 11 | imbi12d |  |-  ( x = A -> ( ( x = B -> X = Z ) <-> ( A = B -> Y = Z ) ) ) | 
						
							| 13 | 1 9 12 6 | vtoclgf |  |-  ( A e. C -> ( A = B -> Y = Z ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( A e. C /\ B e. D ) -> ( A = B -> Y = Z ) ) |