Description: Transitivity of implicit substitution. (Contributed by Jeff Hankins, 13-Sep-2009) (Proof shortened by Mario Carneiro, 11-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | subtr.1 | |- F/_ x A |
|
subtr.2 | |- F/_ x B |
||
subtr.3 | |- F/_ x Y |
||
subtr.4 | |- F/_ x Z |
||
subtr.5 | |- ( x = A -> X = Y ) |
||
subtr.6 | |- ( x = B -> X = Z ) |
||
Assertion | subtr | |- ( ( A e. C /\ B e. D ) -> ( A = B -> Y = Z ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subtr.1 | |- F/_ x A |
|
2 | subtr.2 | |- F/_ x B |
|
3 | subtr.3 | |- F/_ x Y |
|
4 | subtr.4 | |- F/_ x Z |
|
5 | subtr.5 | |- ( x = A -> X = Y ) |
|
6 | subtr.6 | |- ( x = B -> X = Z ) |
|
7 | 1 2 | nfeq | |- F/ x A = B |
8 | 3 4 | nfeq | |- F/ x Y = Z |
9 | 7 8 | nfim | |- F/ x ( A = B -> Y = Z ) |
10 | eqeq1 | |- ( x = A -> ( x = B <-> A = B ) ) |
|
11 | 5 | eqeq1d | |- ( x = A -> ( X = Z <-> Y = Z ) ) |
12 | 10 11 | imbi12d | |- ( x = A -> ( ( x = B -> X = Z ) <-> ( A = B -> Y = Z ) ) ) |
13 | 1 9 12 6 | vtoclgf | |- ( A e. C -> ( A = B -> Y = Z ) ) |
14 | 13 | adantr | |- ( ( A e. C /\ B e. D ) -> ( A = B -> Y = Z ) ) |