Metamath Proof Explorer


Theorem subtr

Description: Transitivity of implicit substitution. (Contributed by Jeff Hankins, 13-Sep-2009) (Proof shortened by Mario Carneiro, 11-Dec-2016)

Ref Expression
Hypotheses subtr.1 _ x A
subtr.2 _ x B
subtr.3 _ x Y
subtr.4 _ x Z
subtr.5 x = A X = Y
subtr.6 x = B X = Z
Assertion subtr A C B D A = B Y = Z

Proof

Step Hyp Ref Expression
1 subtr.1 _ x A
2 subtr.2 _ x B
3 subtr.3 _ x Y
4 subtr.4 _ x Z
5 subtr.5 x = A X = Y
6 subtr.6 x = B X = Z
7 1 2 nfeq x A = B
8 3 4 nfeq x Y = Z
9 7 8 nfim x A = B Y = Z
10 eqeq1 x = A x = B A = B
11 5 eqeq1d x = A X = Z Y = Z
12 10 11 imbi12d x = A x = B X = Z A = B Y = Z
13 1 9 12 6 vtoclgf A C A = B Y = Z
14 13 adantr A C B D A = B Y = Z