| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subtr.1 |
⊢ Ⅎ 𝑥 𝐴 |
| 2 |
|
subtr.2 |
⊢ Ⅎ 𝑥 𝐵 |
| 3 |
|
subtr.3 |
⊢ Ⅎ 𝑥 𝑌 |
| 4 |
|
subtr.4 |
⊢ Ⅎ 𝑥 𝑍 |
| 5 |
|
subtr.5 |
⊢ ( 𝑥 = 𝐴 → 𝑋 = 𝑌 ) |
| 6 |
|
subtr.6 |
⊢ ( 𝑥 = 𝐵 → 𝑋 = 𝑍 ) |
| 7 |
1 2
|
nfeq |
⊢ Ⅎ 𝑥 𝐴 = 𝐵 |
| 8 |
3 4
|
nfeq |
⊢ Ⅎ 𝑥 𝑌 = 𝑍 |
| 9 |
7 8
|
nfim |
⊢ Ⅎ 𝑥 ( 𝐴 = 𝐵 → 𝑌 = 𝑍 ) |
| 10 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 𝐵 ↔ 𝐴 = 𝐵 ) ) |
| 11 |
5
|
eqeq1d |
⊢ ( 𝑥 = 𝐴 → ( 𝑋 = 𝑍 ↔ 𝑌 = 𝑍 ) ) |
| 12 |
10 11
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 = 𝐵 → 𝑋 = 𝑍 ) ↔ ( 𝐴 = 𝐵 → 𝑌 = 𝑍 ) ) ) |
| 13 |
1 9 12 6
|
vtoclgf |
⊢ ( 𝐴 ∈ 𝐶 → ( 𝐴 = 𝐵 → 𝑌 = 𝑍 ) ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝐴 = 𝐵 → 𝑌 = 𝑍 ) ) |