| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subtr.1 | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 2 |  | subtr.2 | ⊢ Ⅎ 𝑥 𝐵 | 
						
							| 3 |  | subtr.3 | ⊢ Ⅎ 𝑥 𝑌 | 
						
							| 4 |  | subtr.4 | ⊢ Ⅎ 𝑥 𝑍 | 
						
							| 5 |  | subtr.5 | ⊢ ( 𝑥  =  𝐴  →  𝑋  =  𝑌 ) | 
						
							| 6 |  | subtr.6 | ⊢ ( 𝑥  =  𝐵  →  𝑋  =  𝑍 ) | 
						
							| 7 | 1 2 | nfeq | ⊢ Ⅎ 𝑥 𝐴  =  𝐵 | 
						
							| 8 | 3 4 | nfeq | ⊢ Ⅎ 𝑥 𝑌  =  𝑍 | 
						
							| 9 | 7 8 | nfim | ⊢ Ⅎ 𝑥 ( 𝐴  =  𝐵  →  𝑌  =  𝑍 ) | 
						
							| 10 |  | eqeq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  =  𝐵  ↔  𝐴  =  𝐵 ) ) | 
						
							| 11 | 5 | eqeq1d | ⊢ ( 𝑥  =  𝐴  →  ( 𝑋  =  𝑍  ↔  𝑌  =  𝑍 ) ) | 
						
							| 12 | 10 11 | imbi12d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥  =  𝐵  →  𝑋  =  𝑍 )  ↔  ( 𝐴  =  𝐵  →  𝑌  =  𝑍 ) ) ) | 
						
							| 13 | 1 9 12 6 | vtoclgf | ⊢ ( 𝐴  ∈  𝐶  →  ( 𝐴  =  𝐵  →  𝑌  =  𝑍 ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐷 )  →  ( 𝐴  =  𝐵  →  𝑌  =  𝑍 ) ) |