Step |
Hyp |
Ref |
Expression |
1 |
|
subtr.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
subtr.2 |
⊢ Ⅎ 𝑥 𝐵 |
3 |
|
subtr2.3 |
⊢ Ⅎ 𝑥 𝜓 |
4 |
|
subtr2.4 |
⊢ Ⅎ 𝑥 𝜒 |
5 |
|
subtr2.5 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
6 |
|
subtr2.6 |
⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) ) |
7 |
1 2
|
nfeq |
⊢ Ⅎ 𝑥 𝐴 = 𝐵 |
8 |
3 4
|
nfbi |
⊢ Ⅎ 𝑥 ( 𝜓 ↔ 𝜒 ) |
9 |
7 8
|
nfim |
⊢ Ⅎ 𝑥 ( 𝐴 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) |
10 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 𝐵 ↔ 𝐴 = 𝐵 ) ) |
11 |
5
|
bibi1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝜑 ↔ 𝜒 ) ↔ ( 𝜓 ↔ 𝜒 ) ) ) |
12 |
10 11
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) ) ↔ ( 𝐴 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) ) ) |
13 |
1 9 12 6
|
vtoclgf |
⊢ ( 𝐴 ∈ 𝐶 → ( 𝐴 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝐴 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) ) |