| Step | Hyp | Ref | Expression | 
						
							| 1 |  | inss2 | ⊢ (  ≤   ∩  ◡  ≤  )  ⊆  ◡  ≤ | 
						
							| 2 |  | relcnv | ⊢ Rel  ◡  ≤ | 
						
							| 3 |  | relss | ⊢ ( (  ≤   ∩  ◡  ≤  )  ⊆  ◡  ≤   →  ( Rel  ◡  ≤   →  Rel  (  ≤   ∩  ◡  ≤  ) ) ) | 
						
							| 4 | 1 2 3 | mp2 | ⊢ Rel  (  ≤   ∩  ◡  ≤  ) | 
						
							| 5 | 4 | a1i | ⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎  ≤  𝑏  ∧  𝑏  ≤  𝑐 )  →  𝑎  ≤  𝑐 )  →  Rel  (  ≤   ∩  ◡  ≤  ) ) | 
						
							| 6 |  | eqidd | ⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎  ≤  𝑏  ∧  𝑏  ≤  𝑐 )  →  𝑎  ≤  𝑐 )  →  dom  (  ≤   ∩  ◡  ≤  )  =  dom  (  ≤   ∩  ◡  ≤  ) ) | 
						
							| 7 |  | brin | ⊢ ( 𝑟 (  ≤   ∩  ◡  ≤  ) 𝑠  ↔  ( 𝑟  ≤  𝑠  ∧  𝑟 ◡  ≤  𝑠 ) ) | 
						
							| 8 |  | vex | ⊢ 𝑟  ∈  V | 
						
							| 9 |  | vex | ⊢ 𝑠  ∈  V | 
						
							| 10 | 8 9 | brcnv | ⊢ ( 𝑟 ◡  ≤  𝑠  ↔  𝑠  ≤  𝑟 ) | 
						
							| 11 | 10 | anbi2i | ⊢ ( ( 𝑟  ≤  𝑠  ∧  𝑟 ◡  ≤  𝑠 )  ↔  ( 𝑟  ≤  𝑠  ∧  𝑠  ≤  𝑟 ) ) | 
						
							| 12 | 7 11 | bitri | ⊢ ( 𝑟 (  ≤   ∩  ◡  ≤  ) 𝑠  ↔  ( 𝑟  ≤  𝑠  ∧  𝑠  ≤  𝑟 ) ) | 
						
							| 13 |  | brin | ⊢ ( 𝑠 (  ≤   ∩  ◡  ≤  ) 𝑡  ↔  ( 𝑠  ≤  𝑡  ∧  𝑠 ◡  ≤  𝑡 ) ) | 
						
							| 14 |  | vex | ⊢ 𝑡  ∈  V | 
						
							| 15 | 9 14 | brcnv | ⊢ ( 𝑠 ◡  ≤  𝑡  ↔  𝑡  ≤  𝑠 ) | 
						
							| 16 | 15 | anbi2i | ⊢ ( ( 𝑠  ≤  𝑡  ∧  𝑠 ◡  ≤  𝑡 )  ↔  ( 𝑠  ≤  𝑡  ∧  𝑡  ≤  𝑠 ) ) | 
						
							| 17 | 13 16 | bitri | ⊢ ( 𝑠 (  ≤   ∩  ◡  ≤  ) 𝑡  ↔  ( 𝑠  ≤  𝑡  ∧  𝑡  ≤  𝑠 ) ) | 
						
							| 18 | 12 17 | anbi12i | ⊢ ( ( 𝑟 (  ≤   ∩  ◡  ≤  ) 𝑠  ∧  𝑠 (  ≤   ∩  ◡  ≤  ) 𝑡 )  ↔  ( ( 𝑟  ≤  𝑠  ∧  𝑠  ≤  𝑟 )  ∧  ( 𝑠  ≤  𝑡  ∧  𝑡  ≤  𝑠 ) ) ) | 
						
							| 19 |  | breq1 | ⊢ ( 𝑎  =  𝑟  →  ( 𝑎  ≤  𝑏  ↔  𝑟  ≤  𝑏 ) ) | 
						
							| 20 | 19 | anbi1d | ⊢ ( 𝑎  =  𝑟  →  ( ( 𝑎  ≤  𝑏  ∧  𝑏  ≤  𝑐 )  ↔  ( 𝑟  ≤  𝑏  ∧  𝑏  ≤  𝑐 ) ) ) | 
						
							| 21 |  | breq1 | ⊢ ( 𝑎  =  𝑟  →  ( 𝑎  ≤  𝑐  ↔  𝑟  ≤  𝑐 ) ) | 
						
							| 22 | 20 21 | imbi12d | ⊢ ( 𝑎  =  𝑟  →  ( ( ( 𝑎  ≤  𝑏  ∧  𝑏  ≤  𝑐 )  →  𝑎  ≤  𝑐 )  ↔  ( ( 𝑟  ≤  𝑏  ∧  𝑏  ≤  𝑐 )  →  𝑟  ≤  𝑐 ) ) ) | 
						
							| 23 | 22 | 2albidv | ⊢ ( 𝑎  =  𝑟  →  ( ∀ 𝑏 ∀ 𝑐 ( ( 𝑎  ≤  𝑏  ∧  𝑏  ≤  𝑐 )  →  𝑎  ≤  𝑐 )  ↔  ∀ 𝑏 ∀ 𝑐 ( ( 𝑟  ≤  𝑏  ∧  𝑏  ≤  𝑐 )  →  𝑟  ≤  𝑐 ) ) ) | 
						
							| 24 | 23 | spvv | ⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎  ≤  𝑏  ∧  𝑏  ≤  𝑐 )  →  𝑎  ≤  𝑐 )  →  ∀ 𝑏 ∀ 𝑐 ( ( 𝑟  ≤  𝑏  ∧  𝑏  ≤  𝑐 )  →  𝑟  ≤  𝑐 ) ) | 
						
							| 25 |  | breq2 | ⊢ ( 𝑏  =  𝑠  →  ( 𝑟  ≤  𝑏  ↔  𝑟  ≤  𝑠 ) ) | 
						
							| 26 |  | breq1 | ⊢ ( 𝑏  =  𝑠  →  ( 𝑏  ≤  𝑐  ↔  𝑠  ≤  𝑐 ) ) | 
						
							| 27 | 25 26 | anbi12d | ⊢ ( 𝑏  =  𝑠  →  ( ( 𝑟  ≤  𝑏  ∧  𝑏  ≤  𝑐 )  ↔  ( 𝑟  ≤  𝑠  ∧  𝑠  ≤  𝑐 ) ) ) | 
						
							| 28 | 27 | imbi1d | ⊢ ( 𝑏  =  𝑠  →  ( ( ( 𝑟  ≤  𝑏  ∧  𝑏  ≤  𝑐 )  →  𝑟  ≤  𝑐 )  ↔  ( ( 𝑟  ≤  𝑠  ∧  𝑠  ≤  𝑐 )  →  𝑟  ≤  𝑐 ) ) ) | 
						
							| 29 | 28 | albidv | ⊢ ( 𝑏  =  𝑠  →  ( ∀ 𝑐 ( ( 𝑟  ≤  𝑏  ∧  𝑏  ≤  𝑐 )  →  𝑟  ≤  𝑐 )  ↔  ∀ 𝑐 ( ( 𝑟  ≤  𝑠  ∧  𝑠  ≤  𝑐 )  →  𝑟  ≤  𝑐 ) ) ) | 
						
							| 30 | 29 | spvv | ⊢ ( ∀ 𝑏 ∀ 𝑐 ( ( 𝑟  ≤  𝑏  ∧  𝑏  ≤  𝑐 )  →  𝑟  ≤  𝑐 )  →  ∀ 𝑐 ( ( 𝑟  ≤  𝑠  ∧  𝑠  ≤  𝑐 )  →  𝑟  ≤  𝑐 ) ) | 
						
							| 31 |  | breq2 | ⊢ ( 𝑐  =  𝑡  →  ( 𝑠  ≤  𝑐  ↔  𝑠  ≤  𝑡 ) ) | 
						
							| 32 | 31 | anbi2d | ⊢ ( 𝑐  =  𝑡  →  ( ( 𝑟  ≤  𝑠  ∧  𝑠  ≤  𝑐 )  ↔  ( 𝑟  ≤  𝑠  ∧  𝑠  ≤  𝑡 ) ) ) | 
						
							| 33 |  | breq2 | ⊢ ( 𝑐  =  𝑡  →  ( 𝑟  ≤  𝑐  ↔  𝑟  ≤  𝑡 ) ) | 
						
							| 34 | 32 33 | imbi12d | ⊢ ( 𝑐  =  𝑡  →  ( ( ( 𝑟  ≤  𝑠  ∧  𝑠  ≤  𝑐 )  →  𝑟  ≤  𝑐 )  ↔  ( ( 𝑟  ≤  𝑠  ∧  𝑠  ≤  𝑡 )  →  𝑟  ≤  𝑡 ) ) ) | 
						
							| 35 | 34 | spvv | ⊢ ( ∀ 𝑐 ( ( 𝑟  ≤  𝑠  ∧  𝑠  ≤  𝑐 )  →  𝑟  ≤  𝑐 )  →  ( ( 𝑟  ≤  𝑠  ∧  𝑠  ≤  𝑡 )  →  𝑟  ≤  𝑡 ) ) | 
						
							| 36 |  | pm3.3 | ⊢ ( ( ( 𝑟  ≤  𝑠  ∧  𝑠  ≤  𝑡 )  →  𝑟  ≤  𝑡 )  →  ( 𝑟  ≤  𝑠  →  ( 𝑠  ≤  𝑡  →  𝑟  ≤  𝑡 ) ) ) | 
						
							| 37 | 36 | com23 | ⊢ ( ( ( 𝑟  ≤  𝑠  ∧  𝑠  ≤  𝑡 )  →  𝑟  ≤  𝑡 )  →  ( 𝑠  ≤  𝑡  →  ( 𝑟  ≤  𝑠  →  𝑟  ≤  𝑡 ) ) ) | 
						
							| 38 | 37 | adantrd | ⊢ ( ( ( 𝑟  ≤  𝑠  ∧  𝑠  ≤  𝑡 )  →  𝑟  ≤  𝑡 )  →  ( ( 𝑠  ≤  𝑡  ∧  𝑡  ≤  𝑠 )  →  ( 𝑟  ≤  𝑠  →  𝑟  ≤  𝑡 ) ) ) | 
						
							| 39 | 38 | com23 | ⊢ ( ( ( 𝑟  ≤  𝑠  ∧  𝑠  ≤  𝑡 )  →  𝑟  ≤  𝑡 )  →  ( 𝑟  ≤  𝑠  →  ( ( 𝑠  ≤  𝑡  ∧  𝑡  ≤  𝑠 )  →  𝑟  ≤  𝑡 ) ) ) | 
						
							| 40 | 39 | adantrd | ⊢ ( ( ( 𝑟  ≤  𝑠  ∧  𝑠  ≤  𝑡 )  →  𝑟  ≤  𝑡 )  →  ( ( 𝑟  ≤  𝑠  ∧  𝑠  ≤  𝑟 )  →  ( ( 𝑠  ≤  𝑡  ∧  𝑡  ≤  𝑠 )  →  𝑟  ≤  𝑡 ) ) ) | 
						
							| 41 | 40 | impd | ⊢ ( ( ( 𝑟  ≤  𝑠  ∧  𝑠  ≤  𝑡 )  →  𝑟  ≤  𝑡 )  →  ( ( ( 𝑟  ≤  𝑠  ∧  𝑠  ≤  𝑟 )  ∧  ( 𝑠  ≤  𝑡  ∧  𝑡  ≤  𝑠 ) )  →  𝑟  ≤  𝑡 ) ) | 
						
							| 42 | 24 30 35 41 | 4syl | ⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎  ≤  𝑏  ∧  𝑏  ≤  𝑐 )  →  𝑎  ≤  𝑐 )  →  ( ( ( 𝑟  ≤  𝑠  ∧  𝑠  ≤  𝑟 )  ∧  ( 𝑠  ≤  𝑡  ∧  𝑡  ≤  𝑠 ) )  →  𝑟  ≤  𝑡 ) ) | 
						
							| 43 |  | breq1 | ⊢ ( 𝑎  =  𝑡  →  ( 𝑎  ≤  𝑏  ↔  𝑡  ≤  𝑏 ) ) | 
						
							| 44 | 43 | anbi1d | ⊢ ( 𝑎  =  𝑡  →  ( ( 𝑎  ≤  𝑏  ∧  𝑏  ≤  𝑐 )  ↔  ( 𝑡  ≤  𝑏  ∧  𝑏  ≤  𝑐 ) ) ) | 
						
							| 45 |  | breq1 | ⊢ ( 𝑎  =  𝑡  →  ( 𝑎  ≤  𝑐  ↔  𝑡  ≤  𝑐 ) ) | 
						
							| 46 | 44 45 | imbi12d | ⊢ ( 𝑎  =  𝑡  →  ( ( ( 𝑎  ≤  𝑏  ∧  𝑏  ≤  𝑐 )  →  𝑎  ≤  𝑐 )  ↔  ( ( 𝑡  ≤  𝑏  ∧  𝑏  ≤  𝑐 )  →  𝑡  ≤  𝑐 ) ) ) | 
						
							| 47 | 46 | 2albidv | ⊢ ( 𝑎  =  𝑡  →  ( ∀ 𝑏 ∀ 𝑐 ( ( 𝑎  ≤  𝑏  ∧  𝑏  ≤  𝑐 )  →  𝑎  ≤  𝑐 )  ↔  ∀ 𝑏 ∀ 𝑐 ( ( 𝑡  ≤  𝑏  ∧  𝑏  ≤  𝑐 )  →  𝑡  ≤  𝑐 ) ) ) | 
						
							| 48 | 47 | spvv | ⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎  ≤  𝑏  ∧  𝑏  ≤  𝑐 )  →  𝑎  ≤  𝑐 )  →  ∀ 𝑏 ∀ 𝑐 ( ( 𝑡  ≤  𝑏  ∧  𝑏  ≤  𝑐 )  →  𝑡  ≤  𝑐 ) ) | 
						
							| 49 |  | breq2 | ⊢ ( 𝑏  =  𝑠  →  ( 𝑡  ≤  𝑏  ↔  𝑡  ≤  𝑠 ) ) | 
						
							| 50 | 49 26 | anbi12d | ⊢ ( 𝑏  =  𝑠  →  ( ( 𝑡  ≤  𝑏  ∧  𝑏  ≤  𝑐 )  ↔  ( 𝑡  ≤  𝑠  ∧  𝑠  ≤  𝑐 ) ) ) | 
						
							| 51 | 50 | imbi1d | ⊢ ( 𝑏  =  𝑠  →  ( ( ( 𝑡  ≤  𝑏  ∧  𝑏  ≤  𝑐 )  →  𝑡  ≤  𝑐 )  ↔  ( ( 𝑡  ≤  𝑠  ∧  𝑠  ≤  𝑐 )  →  𝑡  ≤  𝑐 ) ) ) | 
						
							| 52 | 51 | albidv | ⊢ ( 𝑏  =  𝑠  →  ( ∀ 𝑐 ( ( 𝑡  ≤  𝑏  ∧  𝑏  ≤  𝑐 )  →  𝑡  ≤  𝑐 )  ↔  ∀ 𝑐 ( ( 𝑡  ≤  𝑠  ∧  𝑠  ≤  𝑐 )  →  𝑡  ≤  𝑐 ) ) ) | 
						
							| 53 | 52 | spvv | ⊢ ( ∀ 𝑏 ∀ 𝑐 ( ( 𝑡  ≤  𝑏  ∧  𝑏  ≤  𝑐 )  →  𝑡  ≤  𝑐 )  →  ∀ 𝑐 ( ( 𝑡  ≤  𝑠  ∧  𝑠  ≤  𝑐 )  →  𝑡  ≤  𝑐 ) ) | 
						
							| 54 |  | breq2 | ⊢ ( 𝑐  =  𝑟  →  ( 𝑠  ≤  𝑐  ↔  𝑠  ≤  𝑟 ) ) | 
						
							| 55 | 54 | anbi2d | ⊢ ( 𝑐  =  𝑟  →  ( ( 𝑡  ≤  𝑠  ∧  𝑠  ≤  𝑐 )  ↔  ( 𝑡  ≤  𝑠  ∧  𝑠  ≤  𝑟 ) ) ) | 
						
							| 56 |  | breq2 | ⊢ ( 𝑐  =  𝑟  →  ( 𝑡  ≤  𝑐  ↔  𝑡  ≤  𝑟 ) ) | 
						
							| 57 | 55 56 | imbi12d | ⊢ ( 𝑐  =  𝑟  →  ( ( ( 𝑡  ≤  𝑠  ∧  𝑠  ≤  𝑐 )  →  𝑡  ≤  𝑐 )  ↔  ( ( 𝑡  ≤  𝑠  ∧  𝑠  ≤  𝑟 )  →  𝑡  ≤  𝑟 ) ) ) | 
						
							| 58 | 57 | spvv | ⊢ ( ∀ 𝑐 ( ( 𝑡  ≤  𝑠  ∧  𝑠  ≤  𝑐 )  →  𝑡  ≤  𝑐 )  →  ( ( 𝑡  ≤  𝑠  ∧  𝑠  ≤  𝑟 )  →  𝑡  ≤  𝑟 ) ) | 
						
							| 59 |  | pm3.3 | ⊢ ( ( ( 𝑡  ≤  𝑠  ∧  𝑠  ≤  𝑟 )  →  𝑡  ≤  𝑟 )  →  ( 𝑡  ≤  𝑠  →  ( 𝑠  ≤  𝑟  →  𝑡  ≤  𝑟 ) ) ) | 
						
							| 60 | 59 | adantld | ⊢ ( ( ( 𝑡  ≤  𝑠  ∧  𝑠  ≤  𝑟 )  →  𝑡  ≤  𝑟 )  →  ( ( 𝑠  ≤  𝑡  ∧  𝑡  ≤  𝑠 )  →  ( 𝑠  ≤  𝑟  →  𝑡  ≤  𝑟 ) ) ) | 
						
							| 61 | 60 | com23 | ⊢ ( ( ( 𝑡  ≤  𝑠  ∧  𝑠  ≤  𝑟 )  →  𝑡  ≤  𝑟 )  →  ( 𝑠  ≤  𝑟  →  ( ( 𝑠  ≤  𝑡  ∧  𝑡  ≤  𝑠 )  →  𝑡  ≤  𝑟 ) ) ) | 
						
							| 62 | 61 | adantld | ⊢ ( ( ( 𝑡  ≤  𝑠  ∧  𝑠  ≤  𝑟 )  →  𝑡  ≤  𝑟 )  →  ( ( 𝑟  ≤  𝑠  ∧  𝑠  ≤  𝑟 )  →  ( ( 𝑠  ≤  𝑡  ∧  𝑡  ≤  𝑠 )  →  𝑡  ≤  𝑟 ) ) ) | 
						
							| 63 | 62 | impd | ⊢ ( ( ( 𝑡  ≤  𝑠  ∧  𝑠  ≤  𝑟 )  →  𝑡  ≤  𝑟 )  →  ( ( ( 𝑟  ≤  𝑠  ∧  𝑠  ≤  𝑟 )  ∧  ( 𝑠  ≤  𝑡  ∧  𝑡  ≤  𝑠 ) )  →  𝑡  ≤  𝑟 ) ) | 
						
							| 64 | 48 53 58 63 | 4syl | ⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎  ≤  𝑏  ∧  𝑏  ≤  𝑐 )  →  𝑎  ≤  𝑐 )  →  ( ( ( 𝑟  ≤  𝑠  ∧  𝑠  ≤  𝑟 )  ∧  ( 𝑠  ≤  𝑡  ∧  𝑡  ≤  𝑠 ) )  →  𝑡  ≤  𝑟 ) ) | 
						
							| 65 | 42 64 | jcad | ⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎  ≤  𝑏  ∧  𝑏  ≤  𝑐 )  →  𝑎  ≤  𝑐 )  →  ( ( ( 𝑟  ≤  𝑠  ∧  𝑠  ≤  𝑟 )  ∧  ( 𝑠  ≤  𝑡  ∧  𝑡  ≤  𝑠 ) )  →  ( 𝑟  ≤  𝑡  ∧  𝑡  ≤  𝑟 ) ) ) | 
						
							| 66 |  | brin | ⊢ ( 𝑟 (  ≤   ∩  ◡  ≤  ) 𝑡  ↔  ( 𝑟  ≤  𝑡  ∧  𝑟 ◡  ≤  𝑡 ) ) | 
						
							| 67 | 8 14 | brcnv | ⊢ ( 𝑟 ◡  ≤  𝑡  ↔  𝑡  ≤  𝑟 ) | 
						
							| 68 | 67 | anbi2i | ⊢ ( ( 𝑟  ≤  𝑡  ∧  𝑟 ◡  ≤  𝑡 )  ↔  ( 𝑟  ≤  𝑡  ∧  𝑡  ≤  𝑟 ) ) | 
						
							| 69 | 66 68 | bitr2i | ⊢ ( ( 𝑟  ≤  𝑡  ∧  𝑡  ≤  𝑟 )  ↔  𝑟 (  ≤   ∩  ◡  ≤  ) 𝑡 ) | 
						
							| 70 | 65 69 | imbitrdi | ⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎  ≤  𝑏  ∧  𝑏  ≤  𝑐 )  →  𝑎  ≤  𝑐 )  →  ( ( ( 𝑟  ≤  𝑠  ∧  𝑠  ≤  𝑟 )  ∧  ( 𝑠  ≤  𝑡  ∧  𝑡  ≤  𝑠 ) )  →  𝑟 (  ≤   ∩  ◡  ≤  ) 𝑡 ) ) | 
						
							| 71 | 18 70 | biimtrid | ⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎  ≤  𝑏  ∧  𝑏  ≤  𝑐 )  →  𝑎  ≤  𝑐 )  →  ( ( 𝑟 (  ≤   ∩  ◡  ≤  ) 𝑠  ∧  𝑠 (  ≤   ∩  ◡  ≤  ) 𝑡 )  →  𝑟 (  ≤   ∩  ◡  ≤  ) 𝑡 ) ) | 
						
							| 72 | 9 8 | brcnv | ⊢ ( 𝑠 ◡  ≤  𝑟  ↔  𝑟  ≤  𝑠 ) | 
						
							| 73 | 72 | bicomi | ⊢ ( 𝑟  ≤  𝑠  ↔  𝑠 ◡  ≤  𝑟 ) | 
						
							| 74 | 73 10 | anbi12ci | ⊢ ( ( 𝑟  ≤  𝑠  ∧  𝑟 ◡  ≤  𝑠 )  ↔  ( 𝑠  ≤  𝑟  ∧  𝑠 ◡  ≤  𝑟 ) ) | 
						
							| 75 |  | brin | ⊢ ( 𝑠 (  ≤   ∩  ◡  ≤  ) 𝑟  ↔  ( 𝑠  ≤  𝑟  ∧  𝑠 ◡  ≤  𝑟 ) ) | 
						
							| 76 | 74 7 75 | 3bitr4i | ⊢ ( 𝑟 (  ≤   ∩  ◡  ≤  ) 𝑠  ↔  𝑠 (  ≤   ∩  ◡  ≤  ) 𝑟 ) | 
						
							| 77 | 76 | biimpi | ⊢ ( 𝑟 (  ≤   ∩  ◡  ≤  ) 𝑠  →  𝑠 (  ≤   ∩  ◡  ≤  ) 𝑟 ) | 
						
							| 78 | 71 77 | jctil | ⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎  ≤  𝑏  ∧  𝑏  ≤  𝑐 )  →  𝑎  ≤  𝑐 )  →  ( ( 𝑟 (  ≤   ∩  ◡  ≤  ) 𝑠  →  𝑠 (  ≤   ∩  ◡  ≤  ) 𝑟 )  ∧  ( ( 𝑟 (  ≤   ∩  ◡  ≤  ) 𝑠  ∧  𝑠 (  ≤   ∩  ◡  ≤  ) 𝑡 )  →  𝑟 (  ≤   ∩  ◡  ≤  ) 𝑡 ) ) ) | 
						
							| 79 | 78 | alrimiv | ⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎  ≤  𝑏  ∧  𝑏  ≤  𝑐 )  →  𝑎  ≤  𝑐 )  →  ∀ 𝑡 ( ( 𝑟 (  ≤   ∩  ◡  ≤  ) 𝑠  →  𝑠 (  ≤   ∩  ◡  ≤  ) 𝑟 )  ∧  ( ( 𝑟 (  ≤   ∩  ◡  ≤  ) 𝑠  ∧  𝑠 (  ≤   ∩  ◡  ≤  ) 𝑡 )  →  𝑟 (  ≤   ∩  ◡  ≤  ) 𝑡 ) ) ) | 
						
							| 80 | 79 | alrimivv | ⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎  ≤  𝑏  ∧  𝑏  ≤  𝑐 )  →  𝑎  ≤  𝑐 )  →  ∀ 𝑟 ∀ 𝑠 ∀ 𝑡 ( ( 𝑟 (  ≤   ∩  ◡  ≤  ) 𝑠  →  𝑠 (  ≤   ∩  ◡  ≤  ) 𝑟 )  ∧  ( ( 𝑟 (  ≤   ∩  ◡  ≤  ) 𝑠  ∧  𝑠 (  ≤   ∩  ◡  ≤  ) 𝑡 )  →  𝑟 (  ≤   ∩  ◡  ≤  ) 𝑡 ) ) ) | 
						
							| 81 |  | dfer2 | ⊢ ( (  ≤   ∩  ◡  ≤  )  Er  dom  (  ≤   ∩  ◡  ≤  )  ↔  ( Rel  (  ≤   ∩  ◡  ≤  )  ∧  dom  (  ≤   ∩  ◡  ≤  )  =  dom  (  ≤   ∩  ◡  ≤  )  ∧  ∀ 𝑟 ∀ 𝑠 ∀ 𝑡 ( ( 𝑟 (  ≤   ∩  ◡  ≤  ) 𝑠  →  𝑠 (  ≤   ∩  ◡  ≤  ) 𝑟 )  ∧  ( ( 𝑟 (  ≤   ∩  ◡  ≤  ) 𝑠  ∧  𝑠 (  ≤   ∩  ◡  ≤  ) 𝑡 )  →  𝑟 (  ≤   ∩  ◡  ≤  ) 𝑡 ) ) ) ) | 
						
							| 82 | 5 6 80 81 | syl3anbrc | ⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎  ≤  𝑏  ∧  𝑏  ≤  𝑐 )  →  𝑎  ≤  𝑐 )  →  (  ≤   ∩  ◡  ≤  )  Er  dom  (  ≤   ∩  ◡  ≤  ) ) |