| Step |
Hyp |
Ref |
Expression |
| 1 |
|
inss2 |
⊢ ( ≤ ∩ ◡ ≤ ) ⊆ ◡ ≤ |
| 2 |
|
relcnv |
⊢ Rel ◡ ≤ |
| 3 |
|
relss |
⊢ ( ( ≤ ∩ ◡ ≤ ) ⊆ ◡ ≤ → ( Rel ◡ ≤ → Rel ( ≤ ∩ ◡ ≤ ) ) ) |
| 4 |
1 2 3
|
mp2 |
⊢ Rel ( ≤ ∩ ◡ ≤ ) |
| 5 |
4
|
a1i |
⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑎 ≤ 𝑐 ) → Rel ( ≤ ∩ ◡ ≤ ) ) |
| 6 |
|
eqidd |
⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑎 ≤ 𝑐 ) → dom ( ≤ ∩ ◡ ≤ ) = dom ( ≤ ∩ ◡ ≤ ) ) |
| 7 |
|
brin |
⊢ ( 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑠 ↔ ( 𝑟 ≤ 𝑠 ∧ 𝑟 ◡ ≤ 𝑠 ) ) |
| 8 |
|
vex |
⊢ 𝑟 ∈ V |
| 9 |
|
vex |
⊢ 𝑠 ∈ V |
| 10 |
8 9
|
brcnv |
⊢ ( 𝑟 ◡ ≤ 𝑠 ↔ 𝑠 ≤ 𝑟 ) |
| 11 |
10
|
anbi2i |
⊢ ( ( 𝑟 ≤ 𝑠 ∧ 𝑟 ◡ ≤ 𝑠 ) ↔ ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟 ) ) |
| 12 |
7 11
|
bitri |
⊢ ( 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑠 ↔ ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟 ) ) |
| 13 |
|
brin |
⊢ ( 𝑠 ( ≤ ∩ ◡ ≤ ) 𝑡 ↔ ( 𝑠 ≤ 𝑡 ∧ 𝑠 ◡ ≤ 𝑡 ) ) |
| 14 |
|
vex |
⊢ 𝑡 ∈ V |
| 15 |
9 14
|
brcnv |
⊢ ( 𝑠 ◡ ≤ 𝑡 ↔ 𝑡 ≤ 𝑠 ) |
| 16 |
15
|
anbi2i |
⊢ ( ( 𝑠 ≤ 𝑡 ∧ 𝑠 ◡ ≤ 𝑡 ) ↔ ( 𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠 ) ) |
| 17 |
13 16
|
bitri |
⊢ ( 𝑠 ( ≤ ∩ ◡ ≤ ) 𝑡 ↔ ( 𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠 ) ) |
| 18 |
12 17
|
anbi12i |
⊢ ( ( 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑠 ∧ 𝑠 ( ≤ ∩ ◡ ≤ ) 𝑡 ) ↔ ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟 ) ∧ ( 𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠 ) ) ) |
| 19 |
|
breq1 |
⊢ ( 𝑎 = 𝑟 → ( 𝑎 ≤ 𝑏 ↔ 𝑟 ≤ 𝑏 ) ) |
| 20 |
19
|
anbi1d |
⊢ ( 𝑎 = 𝑟 → ( ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) ↔ ( 𝑟 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) ) ) |
| 21 |
|
breq1 |
⊢ ( 𝑎 = 𝑟 → ( 𝑎 ≤ 𝑐 ↔ 𝑟 ≤ 𝑐 ) ) |
| 22 |
20 21
|
imbi12d |
⊢ ( 𝑎 = 𝑟 → ( ( ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑎 ≤ 𝑐 ) ↔ ( ( 𝑟 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑟 ≤ 𝑐 ) ) ) |
| 23 |
22
|
2albidv |
⊢ ( 𝑎 = 𝑟 → ( ∀ 𝑏 ∀ 𝑐 ( ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑎 ≤ 𝑐 ) ↔ ∀ 𝑏 ∀ 𝑐 ( ( 𝑟 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑟 ≤ 𝑐 ) ) ) |
| 24 |
23
|
spvv |
⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑎 ≤ 𝑐 ) → ∀ 𝑏 ∀ 𝑐 ( ( 𝑟 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑟 ≤ 𝑐 ) ) |
| 25 |
|
breq2 |
⊢ ( 𝑏 = 𝑠 → ( 𝑟 ≤ 𝑏 ↔ 𝑟 ≤ 𝑠 ) ) |
| 26 |
|
breq1 |
⊢ ( 𝑏 = 𝑠 → ( 𝑏 ≤ 𝑐 ↔ 𝑠 ≤ 𝑐 ) ) |
| 27 |
25 26
|
anbi12d |
⊢ ( 𝑏 = 𝑠 → ( ( 𝑟 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) ↔ ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐 ) ) ) |
| 28 |
27
|
imbi1d |
⊢ ( 𝑏 = 𝑠 → ( ( ( 𝑟 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑟 ≤ 𝑐 ) ↔ ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐 ) → 𝑟 ≤ 𝑐 ) ) ) |
| 29 |
28
|
albidv |
⊢ ( 𝑏 = 𝑠 → ( ∀ 𝑐 ( ( 𝑟 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑟 ≤ 𝑐 ) ↔ ∀ 𝑐 ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐 ) → 𝑟 ≤ 𝑐 ) ) ) |
| 30 |
29
|
spvv |
⊢ ( ∀ 𝑏 ∀ 𝑐 ( ( 𝑟 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑟 ≤ 𝑐 ) → ∀ 𝑐 ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐 ) → 𝑟 ≤ 𝑐 ) ) |
| 31 |
|
breq2 |
⊢ ( 𝑐 = 𝑡 → ( 𝑠 ≤ 𝑐 ↔ 𝑠 ≤ 𝑡 ) ) |
| 32 |
31
|
anbi2d |
⊢ ( 𝑐 = 𝑡 → ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐 ) ↔ ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑡 ) ) ) |
| 33 |
|
breq2 |
⊢ ( 𝑐 = 𝑡 → ( 𝑟 ≤ 𝑐 ↔ 𝑟 ≤ 𝑡 ) ) |
| 34 |
32 33
|
imbi12d |
⊢ ( 𝑐 = 𝑡 → ( ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐 ) → 𝑟 ≤ 𝑐 ) ↔ ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑡 ) → 𝑟 ≤ 𝑡 ) ) ) |
| 35 |
34
|
spvv |
⊢ ( ∀ 𝑐 ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐 ) → 𝑟 ≤ 𝑐 ) → ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑡 ) → 𝑟 ≤ 𝑡 ) ) |
| 36 |
|
pm3.3 |
⊢ ( ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑡 ) → 𝑟 ≤ 𝑡 ) → ( 𝑟 ≤ 𝑠 → ( 𝑠 ≤ 𝑡 → 𝑟 ≤ 𝑡 ) ) ) |
| 37 |
36
|
com23 |
⊢ ( ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑡 ) → 𝑟 ≤ 𝑡 ) → ( 𝑠 ≤ 𝑡 → ( 𝑟 ≤ 𝑠 → 𝑟 ≤ 𝑡 ) ) ) |
| 38 |
37
|
adantrd |
⊢ ( ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑡 ) → 𝑟 ≤ 𝑡 ) → ( ( 𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠 ) → ( 𝑟 ≤ 𝑠 → 𝑟 ≤ 𝑡 ) ) ) |
| 39 |
38
|
com23 |
⊢ ( ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑡 ) → 𝑟 ≤ 𝑡 ) → ( 𝑟 ≤ 𝑠 → ( ( 𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠 ) → 𝑟 ≤ 𝑡 ) ) ) |
| 40 |
39
|
adantrd |
⊢ ( ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑡 ) → 𝑟 ≤ 𝑡 ) → ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟 ) → ( ( 𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠 ) → 𝑟 ≤ 𝑡 ) ) ) |
| 41 |
40
|
impd |
⊢ ( ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑡 ) → 𝑟 ≤ 𝑡 ) → ( ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟 ) ∧ ( 𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠 ) ) → 𝑟 ≤ 𝑡 ) ) |
| 42 |
24 30 35 41
|
4syl |
⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑎 ≤ 𝑐 ) → ( ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟 ) ∧ ( 𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠 ) ) → 𝑟 ≤ 𝑡 ) ) |
| 43 |
|
breq1 |
⊢ ( 𝑎 = 𝑡 → ( 𝑎 ≤ 𝑏 ↔ 𝑡 ≤ 𝑏 ) ) |
| 44 |
43
|
anbi1d |
⊢ ( 𝑎 = 𝑡 → ( ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) ↔ ( 𝑡 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) ) ) |
| 45 |
|
breq1 |
⊢ ( 𝑎 = 𝑡 → ( 𝑎 ≤ 𝑐 ↔ 𝑡 ≤ 𝑐 ) ) |
| 46 |
44 45
|
imbi12d |
⊢ ( 𝑎 = 𝑡 → ( ( ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑎 ≤ 𝑐 ) ↔ ( ( 𝑡 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑡 ≤ 𝑐 ) ) ) |
| 47 |
46
|
2albidv |
⊢ ( 𝑎 = 𝑡 → ( ∀ 𝑏 ∀ 𝑐 ( ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑎 ≤ 𝑐 ) ↔ ∀ 𝑏 ∀ 𝑐 ( ( 𝑡 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑡 ≤ 𝑐 ) ) ) |
| 48 |
47
|
spvv |
⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑎 ≤ 𝑐 ) → ∀ 𝑏 ∀ 𝑐 ( ( 𝑡 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑡 ≤ 𝑐 ) ) |
| 49 |
|
breq2 |
⊢ ( 𝑏 = 𝑠 → ( 𝑡 ≤ 𝑏 ↔ 𝑡 ≤ 𝑠 ) ) |
| 50 |
49 26
|
anbi12d |
⊢ ( 𝑏 = 𝑠 → ( ( 𝑡 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) ↔ ( 𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐 ) ) ) |
| 51 |
50
|
imbi1d |
⊢ ( 𝑏 = 𝑠 → ( ( ( 𝑡 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑡 ≤ 𝑐 ) ↔ ( ( 𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐 ) → 𝑡 ≤ 𝑐 ) ) ) |
| 52 |
51
|
albidv |
⊢ ( 𝑏 = 𝑠 → ( ∀ 𝑐 ( ( 𝑡 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑡 ≤ 𝑐 ) ↔ ∀ 𝑐 ( ( 𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐 ) → 𝑡 ≤ 𝑐 ) ) ) |
| 53 |
52
|
spvv |
⊢ ( ∀ 𝑏 ∀ 𝑐 ( ( 𝑡 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑡 ≤ 𝑐 ) → ∀ 𝑐 ( ( 𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐 ) → 𝑡 ≤ 𝑐 ) ) |
| 54 |
|
breq2 |
⊢ ( 𝑐 = 𝑟 → ( 𝑠 ≤ 𝑐 ↔ 𝑠 ≤ 𝑟 ) ) |
| 55 |
54
|
anbi2d |
⊢ ( 𝑐 = 𝑟 → ( ( 𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐 ) ↔ ( 𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟 ) ) ) |
| 56 |
|
breq2 |
⊢ ( 𝑐 = 𝑟 → ( 𝑡 ≤ 𝑐 ↔ 𝑡 ≤ 𝑟 ) ) |
| 57 |
55 56
|
imbi12d |
⊢ ( 𝑐 = 𝑟 → ( ( ( 𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐 ) → 𝑡 ≤ 𝑐 ) ↔ ( ( 𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟 ) → 𝑡 ≤ 𝑟 ) ) ) |
| 58 |
57
|
spvv |
⊢ ( ∀ 𝑐 ( ( 𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐 ) → 𝑡 ≤ 𝑐 ) → ( ( 𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟 ) → 𝑡 ≤ 𝑟 ) ) |
| 59 |
|
pm3.3 |
⊢ ( ( ( 𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟 ) → 𝑡 ≤ 𝑟 ) → ( 𝑡 ≤ 𝑠 → ( 𝑠 ≤ 𝑟 → 𝑡 ≤ 𝑟 ) ) ) |
| 60 |
59
|
adantld |
⊢ ( ( ( 𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟 ) → 𝑡 ≤ 𝑟 ) → ( ( 𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠 ) → ( 𝑠 ≤ 𝑟 → 𝑡 ≤ 𝑟 ) ) ) |
| 61 |
60
|
com23 |
⊢ ( ( ( 𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟 ) → 𝑡 ≤ 𝑟 ) → ( 𝑠 ≤ 𝑟 → ( ( 𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠 ) → 𝑡 ≤ 𝑟 ) ) ) |
| 62 |
61
|
adantld |
⊢ ( ( ( 𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟 ) → 𝑡 ≤ 𝑟 ) → ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟 ) → ( ( 𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠 ) → 𝑡 ≤ 𝑟 ) ) ) |
| 63 |
62
|
impd |
⊢ ( ( ( 𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟 ) → 𝑡 ≤ 𝑟 ) → ( ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟 ) ∧ ( 𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠 ) ) → 𝑡 ≤ 𝑟 ) ) |
| 64 |
48 53 58 63
|
4syl |
⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑎 ≤ 𝑐 ) → ( ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟 ) ∧ ( 𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠 ) ) → 𝑡 ≤ 𝑟 ) ) |
| 65 |
42 64
|
jcad |
⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑎 ≤ 𝑐 ) → ( ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟 ) ∧ ( 𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠 ) ) → ( 𝑟 ≤ 𝑡 ∧ 𝑡 ≤ 𝑟 ) ) ) |
| 66 |
|
brin |
⊢ ( 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑡 ↔ ( 𝑟 ≤ 𝑡 ∧ 𝑟 ◡ ≤ 𝑡 ) ) |
| 67 |
8 14
|
brcnv |
⊢ ( 𝑟 ◡ ≤ 𝑡 ↔ 𝑡 ≤ 𝑟 ) |
| 68 |
67
|
anbi2i |
⊢ ( ( 𝑟 ≤ 𝑡 ∧ 𝑟 ◡ ≤ 𝑡 ) ↔ ( 𝑟 ≤ 𝑡 ∧ 𝑡 ≤ 𝑟 ) ) |
| 69 |
66 68
|
bitr2i |
⊢ ( ( 𝑟 ≤ 𝑡 ∧ 𝑡 ≤ 𝑟 ) ↔ 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑡 ) |
| 70 |
65 69
|
imbitrdi |
⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑎 ≤ 𝑐 ) → ( ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟 ) ∧ ( 𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠 ) ) → 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑡 ) ) |
| 71 |
18 70
|
biimtrid |
⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑎 ≤ 𝑐 ) → ( ( 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑠 ∧ 𝑠 ( ≤ ∩ ◡ ≤ ) 𝑡 ) → 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑡 ) ) |
| 72 |
9 8
|
brcnv |
⊢ ( 𝑠 ◡ ≤ 𝑟 ↔ 𝑟 ≤ 𝑠 ) |
| 73 |
72
|
bicomi |
⊢ ( 𝑟 ≤ 𝑠 ↔ 𝑠 ◡ ≤ 𝑟 ) |
| 74 |
73 10
|
anbi12ci |
⊢ ( ( 𝑟 ≤ 𝑠 ∧ 𝑟 ◡ ≤ 𝑠 ) ↔ ( 𝑠 ≤ 𝑟 ∧ 𝑠 ◡ ≤ 𝑟 ) ) |
| 75 |
|
brin |
⊢ ( 𝑠 ( ≤ ∩ ◡ ≤ ) 𝑟 ↔ ( 𝑠 ≤ 𝑟 ∧ 𝑠 ◡ ≤ 𝑟 ) ) |
| 76 |
74 7 75
|
3bitr4i |
⊢ ( 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑠 ↔ 𝑠 ( ≤ ∩ ◡ ≤ ) 𝑟 ) |
| 77 |
76
|
biimpi |
⊢ ( 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑠 → 𝑠 ( ≤ ∩ ◡ ≤ ) 𝑟 ) |
| 78 |
71 77
|
jctil |
⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑎 ≤ 𝑐 ) → ( ( 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑠 → 𝑠 ( ≤ ∩ ◡ ≤ ) 𝑟 ) ∧ ( ( 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑠 ∧ 𝑠 ( ≤ ∩ ◡ ≤ ) 𝑡 ) → 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑡 ) ) ) |
| 79 |
78
|
alrimiv |
⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑎 ≤ 𝑐 ) → ∀ 𝑡 ( ( 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑠 → 𝑠 ( ≤ ∩ ◡ ≤ ) 𝑟 ) ∧ ( ( 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑠 ∧ 𝑠 ( ≤ ∩ ◡ ≤ ) 𝑡 ) → 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑡 ) ) ) |
| 80 |
79
|
alrimivv |
⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑎 ≤ 𝑐 ) → ∀ 𝑟 ∀ 𝑠 ∀ 𝑡 ( ( 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑠 → 𝑠 ( ≤ ∩ ◡ ≤ ) 𝑟 ) ∧ ( ( 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑠 ∧ 𝑠 ( ≤ ∩ ◡ ≤ ) 𝑡 ) → 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑡 ) ) ) |
| 81 |
|
dfer2 |
⊢ ( ( ≤ ∩ ◡ ≤ ) Er dom ( ≤ ∩ ◡ ≤ ) ↔ ( Rel ( ≤ ∩ ◡ ≤ ) ∧ dom ( ≤ ∩ ◡ ≤ ) = dom ( ≤ ∩ ◡ ≤ ) ∧ ∀ 𝑟 ∀ 𝑠 ∀ 𝑡 ( ( 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑠 → 𝑠 ( ≤ ∩ ◡ ≤ ) 𝑟 ) ∧ ( ( 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑠 ∧ 𝑠 ( ≤ ∩ ◡ ≤ ) 𝑡 ) → 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑡 ) ) ) ) |
| 82 |
5 6 80 81
|
syl3anbrc |
⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑎 ≤ 𝑐 ) → ( ≤ ∩ ◡ ≤ ) Er dom ( ≤ ∩ ◡ ≤ ) ) |