Step |
Hyp |
Ref |
Expression |
1 |
|
inss2 |
⊢ ( ≤ ∩ ◡ ≤ ) ⊆ ◡ ≤ |
2 |
|
relcnv |
⊢ Rel ◡ ≤ |
3 |
|
relss |
⊢ ( ( ≤ ∩ ◡ ≤ ) ⊆ ◡ ≤ → ( Rel ◡ ≤ → Rel ( ≤ ∩ ◡ ≤ ) ) ) |
4 |
1 2 3
|
mp2 |
⊢ Rel ( ≤ ∩ ◡ ≤ ) |
5 |
4
|
a1i |
⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑎 ≤ 𝑐 ) → Rel ( ≤ ∩ ◡ ≤ ) ) |
6 |
|
eqidd |
⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑎 ≤ 𝑐 ) → dom ( ≤ ∩ ◡ ≤ ) = dom ( ≤ ∩ ◡ ≤ ) ) |
7 |
|
brin |
⊢ ( 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑠 ↔ ( 𝑟 ≤ 𝑠 ∧ 𝑟 ◡ ≤ 𝑠 ) ) |
8 |
|
vex |
⊢ 𝑟 ∈ V |
9 |
|
vex |
⊢ 𝑠 ∈ V |
10 |
8 9
|
brcnv |
⊢ ( 𝑟 ◡ ≤ 𝑠 ↔ 𝑠 ≤ 𝑟 ) |
11 |
10
|
anbi2i |
⊢ ( ( 𝑟 ≤ 𝑠 ∧ 𝑟 ◡ ≤ 𝑠 ) ↔ ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟 ) ) |
12 |
7 11
|
bitri |
⊢ ( 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑠 ↔ ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟 ) ) |
13 |
|
brin |
⊢ ( 𝑠 ( ≤ ∩ ◡ ≤ ) 𝑡 ↔ ( 𝑠 ≤ 𝑡 ∧ 𝑠 ◡ ≤ 𝑡 ) ) |
14 |
|
vex |
⊢ 𝑡 ∈ V |
15 |
9 14
|
brcnv |
⊢ ( 𝑠 ◡ ≤ 𝑡 ↔ 𝑡 ≤ 𝑠 ) |
16 |
15
|
anbi2i |
⊢ ( ( 𝑠 ≤ 𝑡 ∧ 𝑠 ◡ ≤ 𝑡 ) ↔ ( 𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠 ) ) |
17 |
13 16
|
bitri |
⊢ ( 𝑠 ( ≤ ∩ ◡ ≤ ) 𝑡 ↔ ( 𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠 ) ) |
18 |
12 17
|
anbi12i |
⊢ ( ( 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑠 ∧ 𝑠 ( ≤ ∩ ◡ ≤ ) 𝑡 ) ↔ ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟 ) ∧ ( 𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠 ) ) ) |
19 |
|
breq1 |
⊢ ( 𝑎 = 𝑟 → ( 𝑎 ≤ 𝑏 ↔ 𝑟 ≤ 𝑏 ) ) |
20 |
19
|
anbi1d |
⊢ ( 𝑎 = 𝑟 → ( ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) ↔ ( 𝑟 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) ) ) |
21 |
|
breq1 |
⊢ ( 𝑎 = 𝑟 → ( 𝑎 ≤ 𝑐 ↔ 𝑟 ≤ 𝑐 ) ) |
22 |
20 21
|
imbi12d |
⊢ ( 𝑎 = 𝑟 → ( ( ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑎 ≤ 𝑐 ) ↔ ( ( 𝑟 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑟 ≤ 𝑐 ) ) ) |
23 |
22
|
2albidv |
⊢ ( 𝑎 = 𝑟 → ( ∀ 𝑏 ∀ 𝑐 ( ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑎 ≤ 𝑐 ) ↔ ∀ 𝑏 ∀ 𝑐 ( ( 𝑟 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑟 ≤ 𝑐 ) ) ) |
24 |
23
|
spvv |
⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑎 ≤ 𝑐 ) → ∀ 𝑏 ∀ 𝑐 ( ( 𝑟 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑟 ≤ 𝑐 ) ) |
25 |
|
breq2 |
⊢ ( 𝑏 = 𝑠 → ( 𝑟 ≤ 𝑏 ↔ 𝑟 ≤ 𝑠 ) ) |
26 |
|
breq1 |
⊢ ( 𝑏 = 𝑠 → ( 𝑏 ≤ 𝑐 ↔ 𝑠 ≤ 𝑐 ) ) |
27 |
25 26
|
anbi12d |
⊢ ( 𝑏 = 𝑠 → ( ( 𝑟 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) ↔ ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐 ) ) ) |
28 |
27
|
imbi1d |
⊢ ( 𝑏 = 𝑠 → ( ( ( 𝑟 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑟 ≤ 𝑐 ) ↔ ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐 ) → 𝑟 ≤ 𝑐 ) ) ) |
29 |
28
|
albidv |
⊢ ( 𝑏 = 𝑠 → ( ∀ 𝑐 ( ( 𝑟 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑟 ≤ 𝑐 ) ↔ ∀ 𝑐 ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐 ) → 𝑟 ≤ 𝑐 ) ) ) |
30 |
29
|
spvv |
⊢ ( ∀ 𝑏 ∀ 𝑐 ( ( 𝑟 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑟 ≤ 𝑐 ) → ∀ 𝑐 ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐 ) → 𝑟 ≤ 𝑐 ) ) |
31 |
|
breq2 |
⊢ ( 𝑐 = 𝑡 → ( 𝑠 ≤ 𝑐 ↔ 𝑠 ≤ 𝑡 ) ) |
32 |
31
|
anbi2d |
⊢ ( 𝑐 = 𝑡 → ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐 ) ↔ ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑡 ) ) ) |
33 |
|
breq2 |
⊢ ( 𝑐 = 𝑡 → ( 𝑟 ≤ 𝑐 ↔ 𝑟 ≤ 𝑡 ) ) |
34 |
32 33
|
imbi12d |
⊢ ( 𝑐 = 𝑡 → ( ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐 ) → 𝑟 ≤ 𝑐 ) ↔ ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑡 ) → 𝑟 ≤ 𝑡 ) ) ) |
35 |
34
|
spvv |
⊢ ( ∀ 𝑐 ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐 ) → 𝑟 ≤ 𝑐 ) → ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑡 ) → 𝑟 ≤ 𝑡 ) ) |
36 |
|
pm3.3 |
⊢ ( ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑡 ) → 𝑟 ≤ 𝑡 ) → ( 𝑟 ≤ 𝑠 → ( 𝑠 ≤ 𝑡 → 𝑟 ≤ 𝑡 ) ) ) |
37 |
36
|
com23 |
⊢ ( ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑡 ) → 𝑟 ≤ 𝑡 ) → ( 𝑠 ≤ 𝑡 → ( 𝑟 ≤ 𝑠 → 𝑟 ≤ 𝑡 ) ) ) |
38 |
37
|
adantrd |
⊢ ( ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑡 ) → 𝑟 ≤ 𝑡 ) → ( ( 𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠 ) → ( 𝑟 ≤ 𝑠 → 𝑟 ≤ 𝑡 ) ) ) |
39 |
38
|
com23 |
⊢ ( ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑡 ) → 𝑟 ≤ 𝑡 ) → ( 𝑟 ≤ 𝑠 → ( ( 𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠 ) → 𝑟 ≤ 𝑡 ) ) ) |
40 |
39
|
adantrd |
⊢ ( ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑡 ) → 𝑟 ≤ 𝑡 ) → ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟 ) → ( ( 𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠 ) → 𝑟 ≤ 𝑡 ) ) ) |
41 |
40
|
impd |
⊢ ( ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑡 ) → 𝑟 ≤ 𝑡 ) → ( ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟 ) ∧ ( 𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠 ) ) → 𝑟 ≤ 𝑡 ) ) |
42 |
24 30 35 41
|
4syl |
⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑎 ≤ 𝑐 ) → ( ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟 ) ∧ ( 𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠 ) ) → 𝑟 ≤ 𝑡 ) ) |
43 |
|
breq1 |
⊢ ( 𝑎 = 𝑡 → ( 𝑎 ≤ 𝑏 ↔ 𝑡 ≤ 𝑏 ) ) |
44 |
43
|
anbi1d |
⊢ ( 𝑎 = 𝑡 → ( ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) ↔ ( 𝑡 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) ) ) |
45 |
|
breq1 |
⊢ ( 𝑎 = 𝑡 → ( 𝑎 ≤ 𝑐 ↔ 𝑡 ≤ 𝑐 ) ) |
46 |
44 45
|
imbi12d |
⊢ ( 𝑎 = 𝑡 → ( ( ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑎 ≤ 𝑐 ) ↔ ( ( 𝑡 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑡 ≤ 𝑐 ) ) ) |
47 |
46
|
2albidv |
⊢ ( 𝑎 = 𝑡 → ( ∀ 𝑏 ∀ 𝑐 ( ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑎 ≤ 𝑐 ) ↔ ∀ 𝑏 ∀ 𝑐 ( ( 𝑡 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑡 ≤ 𝑐 ) ) ) |
48 |
47
|
spvv |
⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑎 ≤ 𝑐 ) → ∀ 𝑏 ∀ 𝑐 ( ( 𝑡 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑡 ≤ 𝑐 ) ) |
49 |
|
breq2 |
⊢ ( 𝑏 = 𝑠 → ( 𝑡 ≤ 𝑏 ↔ 𝑡 ≤ 𝑠 ) ) |
50 |
49 26
|
anbi12d |
⊢ ( 𝑏 = 𝑠 → ( ( 𝑡 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) ↔ ( 𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐 ) ) ) |
51 |
50
|
imbi1d |
⊢ ( 𝑏 = 𝑠 → ( ( ( 𝑡 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑡 ≤ 𝑐 ) ↔ ( ( 𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐 ) → 𝑡 ≤ 𝑐 ) ) ) |
52 |
51
|
albidv |
⊢ ( 𝑏 = 𝑠 → ( ∀ 𝑐 ( ( 𝑡 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑡 ≤ 𝑐 ) ↔ ∀ 𝑐 ( ( 𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐 ) → 𝑡 ≤ 𝑐 ) ) ) |
53 |
52
|
spvv |
⊢ ( ∀ 𝑏 ∀ 𝑐 ( ( 𝑡 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑡 ≤ 𝑐 ) → ∀ 𝑐 ( ( 𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐 ) → 𝑡 ≤ 𝑐 ) ) |
54 |
|
breq2 |
⊢ ( 𝑐 = 𝑟 → ( 𝑠 ≤ 𝑐 ↔ 𝑠 ≤ 𝑟 ) ) |
55 |
54
|
anbi2d |
⊢ ( 𝑐 = 𝑟 → ( ( 𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐 ) ↔ ( 𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟 ) ) ) |
56 |
|
breq2 |
⊢ ( 𝑐 = 𝑟 → ( 𝑡 ≤ 𝑐 ↔ 𝑡 ≤ 𝑟 ) ) |
57 |
55 56
|
imbi12d |
⊢ ( 𝑐 = 𝑟 → ( ( ( 𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐 ) → 𝑡 ≤ 𝑐 ) ↔ ( ( 𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟 ) → 𝑡 ≤ 𝑟 ) ) ) |
58 |
57
|
spvv |
⊢ ( ∀ 𝑐 ( ( 𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑐 ) → 𝑡 ≤ 𝑐 ) → ( ( 𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟 ) → 𝑡 ≤ 𝑟 ) ) |
59 |
|
pm3.3 |
⊢ ( ( ( 𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟 ) → 𝑡 ≤ 𝑟 ) → ( 𝑡 ≤ 𝑠 → ( 𝑠 ≤ 𝑟 → 𝑡 ≤ 𝑟 ) ) ) |
60 |
59
|
adantld |
⊢ ( ( ( 𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟 ) → 𝑡 ≤ 𝑟 ) → ( ( 𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠 ) → ( 𝑠 ≤ 𝑟 → 𝑡 ≤ 𝑟 ) ) ) |
61 |
60
|
com23 |
⊢ ( ( ( 𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟 ) → 𝑡 ≤ 𝑟 ) → ( 𝑠 ≤ 𝑟 → ( ( 𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠 ) → 𝑡 ≤ 𝑟 ) ) ) |
62 |
61
|
adantld |
⊢ ( ( ( 𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟 ) → 𝑡 ≤ 𝑟 ) → ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟 ) → ( ( 𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠 ) → 𝑡 ≤ 𝑟 ) ) ) |
63 |
62
|
impd |
⊢ ( ( ( 𝑡 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟 ) → 𝑡 ≤ 𝑟 ) → ( ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟 ) ∧ ( 𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠 ) ) → 𝑡 ≤ 𝑟 ) ) |
64 |
48 53 58 63
|
4syl |
⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑎 ≤ 𝑐 ) → ( ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟 ) ∧ ( 𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠 ) ) → 𝑡 ≤ 𝑟 ) ) |
65 |
42 64
|
jcad |
⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑎 ≤ 𝑐 ) → ( ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟 ) ∧ ( 𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠 ) ) → ( 𝑟 ≤ 𝑡 ∧ 𝑡 ≤ 𝑟 ) ) ) |
66 |
|
brin |
⊢ ( 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑡 ↔ ( 𝑟 ≤ 𝑡 ∧ 𝑟 ◡ ≤ 𝑡 ) ) |
67 |
8 14
|
brcnv |
⊢ ( 𝑟 ◡ ≤ 𝑡 ↔ 𝑡 ≤ 𝑟 ) |
68 |
67
|
anbi2i |
⊢ ( ( 𝑟 ≤ 𝑡 ∧ 𝑟 ◡ ≤ 𝑡 ) ↔ ( 𝑟 ≤ 𝑡 ∧ 𝑡 ≤ 𝑟 ) ) |
69 |
66 68
|
bitr2i |
⊢ ( ( 𝑟 ≤ 𝑡 ∧ 𝑡 ≤ 𝑟 ) ↔ 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑡 ) |
70 |
65 69
|
syl6ib |
⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑎 ≤ 𝑐 ) → ( ( ( 𝑟 ≤ 𝑠 ∧ 𝑠 ≤ 𝑟 ) ∧ ( 𝑠 ≤ 𝑡 ∧ 𝑡 ≤ 𝑠 ) ) → 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑡 ) ) |
71 |
18 70
|
syl5bi |
⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑎 ≤ 𝑐 ) → ( ( 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑠 ∧ 𝑠 ( ≤ ∩ ◡ ≤ ) 𝑡 ) → 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑡 ) ) |
72 |
9 8
|
brcnv |
⊢ ( 𝑠 ◡ ≤ 𝑟 ↔ 𝑟 ≤ 𝑠 ) |
73 |
72
|
bicomi |
⊢ ( 𝑟 ≤ 𝑠 ↔ 𝑠 ◡ ≤ 𝑟 ) |
74 |
73 10
|
anbi12ci |
⊢ ( ( 𝑟 ≤ 𝑠 ∧ 𝑟 ◡ ≤ 𝑠 ) ↔ ( 𝑠 ≤ 𝑟 ∧ 𝑠 ◡ ≤ 𝑟 ) ) |
75 |
|
brin |
⊢ ( 𝑠 ( ≤ ∩ ◡ ≤ ) 𝑟 ↔ ( 𝑠 ≤ 𝑟 ∧ 𝑠 ◡ ≤ 𝑟 ) ) |
76 |
74 7 75
|
3bitr4i |
⊢ ( 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑠 ↔ 𝑠 ( ≤ ∩ ◡ ≤ ) 𝑟 ) |
77 |
76
|
biimpi |
⊢ ( 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑠 → 𝑠 ( ≤ ∩ ◡ ≤ ) 𝑟 ) |
78 |
71 77
|
jctil |
⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑎 ≤ 𝑐 ) → ( ( 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑠 → 𝑠 ( ≤ ∩ ◡ ≤ ) 𝑟 ) ∧ ( ( 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑠 ∧ 𝑠 ( ≤ ∩ ◡ ≤ ) 𝑡 ) → 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑡 ) ) ) |
79 |
78
|
alrimiv |
⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑎 ≤ 𝑐 ) → ∀ 𝑡 ( ( 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑠 → 𝑠 ( ≤ ∩ ◡ ≤ ) 𝑟 ) ∧ ( ( 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑠 ∧ 𝑠 ( ≤ ∩ ◡ ≤ ) 𝑡 ) → 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑡 ) ) ) |
80 |
79
|
alrimivv |
⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑎 ≤ 𝑐 ) → ∀ 𝑟 ∀ 𝑠 ∀ 𝑡 ( ( 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑠 → 𝑠 ( ≤ ∩ ◡ ≤ ) 𝑟 ) ∧ ( ( 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑠 ∧ 𝑠 ( ≤ ∩ ◡ ≤ ) 𝑡 ) → 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑡 ) ) ) |
81 |
|
dfer2 |
⊢ ( ( ≤ ∩ ◡ ≤ ) Er dom ( ≤ ∩ ◡ ≤ ) ↔ ( Rel ( ≤ ∩ ◡ ≤ ) ∧ dom ( ≤ ∩ ◡ ≤ ) = dom ( ≤ ∩ ◡ ≤ ) ∧ ∀ 𝑟 ∀ 𝑠 ∀ 𝑡 ( ( 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑠 → 𝑠 ( ≤ ∩ ◡ ≤ ) 𝑟 ) ∧ ( ( 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑠 ∧ 𝑠 ( ≤ ∩ ◡ ≤ ) 𝑡 ) → 𝑟 ( ≤ ∩ ◡ ≤ ) 𝑡 ) ) ) ) |
82 |
5 6 80 81
|
syl3anbrc |
⊢ ( ∀ 𝑎 ∀ 𝑏 ∀ 𝑐 ( ( 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 ) → 𝑎 ≤ 𝑐 ) → ( ≤ ∩ ◡ ≤ ) Er dom ( ≤ ∩ ◡ ≤ ) ) |